White
 Autumn - Block 4
 Multiplication \& Division

Overview

Small Steps

NC Objectives

Recognise equal groupsMake equal groups
Add equal groupsMultiplication sentences using the \times symbolMultiplication sentences from pictures
Use arrays2 times-table5 times-table10 times-table
Recall and use multiplication and division facts for the 2,5 and 10 timestables, including recognising odd and even numbers.

Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (x), division (\Varangle) and equals (=) sign.

Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods and multiplication and division facts, including problems in contexts.

Show that the multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot.

Recognise Equal Groups

Notes and Guidance

Children describe equal groups using stem sentences to support them. It is important that children know which groups are equal and unequal, and why they are equal or unequal. The addition and multiplication symbols are not used within this small step but use of the language of addition and multiplication will support them in understanding repeated addition and multiplication. The examples included refer to the times tables facts that Year 2 children need to know.

Mathematical Talk

Varied Fluency

Complete the stem sentences.

There are \qquad equal groups with \qquad in each group.
\square Complete the sentences.

What does the 2 represent? What does the 3 represent?
What does the 5 represent? What does the 2 represent?
There are \qquad equal groups with \qquad in each group.

There are \qquad baguettes altogether.

Describe the equal groups.

What is the same and what is different in each group?

Recognise Equal Groups

Reasoning and Problem Solving

Create your own picture to go in each column.

Spot the mistake.

Alex says, "There are 10 equal groups with 2 in each group. There are ten 2 s ."

Hearts and dots in unequal groups.

Stars and squares
in equal groups.

There are 2 equal groups with 10 in each group

There are two 10s.

Make Equal Groups

Notes and Guidance

Children should be able to make equal groups to demonstrate their understanding of the word 'equal'.

With the examples provided to the children, it is important that they are exposed to numerals and words, as well as multiple representations.

Mathematical Talk

How else could you represent these in equal groups?
How many ways can you represent this?
How have you grouped your items?

Varied Fluency

The Base 10 shows six equal groups with ten in each group. There are six tens.

IIIII

How else can you represent these as equal groups?
How many ways can you represent 'four equal groups with three in each group'?

What else do we need to show 'five 3s'?

How else can we show five equal groups with 3 in each group? Compare your answer with a partner.

Make Equal Groups

Reasoning and Problem Solving

Has Eva shown the equal groups correctly? Draw or use cubes to show what Eva should have done. How can you make the groups equal? or make 3 towers with 2 in each tower.
Various answers
e.g. move one star
from right to left
box. Any answer
that makes them
equal.

| Match the equal groups. | | Sweets, squares,
 two 3s. |
| :--- | :--- | :--- | :--- | :--- |
| | Two 10s | Ds. |

Add Equal Groups

Notes and Guidance

Varied Fluency

Children begin to connect equal groups to repeated addition.
At this point children have added 3 one digit numbers together, therefore they can add up to 3 equal groups when each group is any one digit number.

If there are more than 3 equal groups, the examples must be limited to $2 \mathrm{~s}, 5 \mathrm{~s}, 10 \mathrm{~s}$ and 3 s .

Mathematical Talk

What do the two 3 s represent?
Why are we using the addition symbol?
How else can we show the equal groups?
What is the total?

Complete:

There are \qquad equal groups with \qquad in each group.
There are___ 3 s .
-_ \qquad $=6$

Complete:

There are \qquad equal groups with \qquad in each group.
There are three \qquad s.
\qquad
\qquad $+$ \qquad $=12$

Complete the table.

antin antin	Draw It	Say It	Add It

Add Equal Groups

Reasoning and Problem Solving

True or False?

$5+5=2+2+2+2+2$

Draw an image or use cubes to help you explain your answer.
This is true
because they are
both equal to 10
but the groups
look different.
To the left of the
'equal to' sign are
2 equal groups of
5 , and to the right
of the 'equal to'
sign are 5 equal
groups of 2.

The Multiplication Symbol

Notes and Guidance

Children are introduced to the multiplication symbol for the first time. They should link repeated addition and multiplication together, using stem sentences to support their understanding.
They should also be able to interpret mathematical stories and create their own involving multiplication.
The use of concrete resources and pictorial representations is still vital for understanding.

Mathematical Talk

What does the 3 represent? What does the 6 represent?
What does 'lots of' mean?
Does $18=3 \times 6$ mean the same?
How is $6+6+6$ the same as 3×6 ? How is it different?

Varied Fluency

Complete the sentences to describe the equal groups.

There are \qquad equal groups with \qquad in each group. There are three \qquad .
\square Complete:

Three 2s	Draw It	Addition	Multiplication
There are 3 equal groups with 2 in each group.			

Complete:

Addition	Multiplication	Story
$10+10+10$		
	6×5	

The Multiplication Symbol

Reasoning and Problem Solving

$3+3+3=3 \times 3$	He is correct because $\begin{aligned} & 3+3+3=9 \\ & \text { and } 3 \times 3=9 \end{aligned}$
Is Mo correct? Explain why. Draw an image to help you.	
Use $<,>$ or $=$ to make the statements correct.	$\begin{aligned} & 3 \times 5<5+5+ \\ & 5+5 \end{aligned}$
$3 \times 5 \bigcirc 5+5+5+5$	$2 \times 2=2+2$
$\begin{array}{llc} 2 \times 2 & \bigcirc & 2+2 \\ 10 \times 2 & \bigcirc & 5+5+5 \end{array}$	$\begin{aligned} & 10 \times 2>5+5+ \\ & 5 \end{aligned}$

Think of a multiplication to complete:	Any two numbers which multiply together to give an answer of less than 18
$\qquad 6+6+6>\ldots \times$	$6+6=2 \times 6$ $2+2+2+2+2+2$ $=6 \times 2$
The total is 12 , what could the addition and multiplication be?	$3+3+3+3=4 \times 3$ $4+4+4=3 \times 4$
	$12=1 \times 12$
$1+1+1+1+1+1+$	
$1+1+1+1+1=12$	
$\times 1$	

Multiplication from Pictures

Notes and Guidance

Children will use the multiplication symbol and work out the total from pictures.

They should also be able to interpret a multiplication word problem by drawing images to help them solve it.

Coins could be used within this small step too.

Mathematical Talk

\square Complete:

Varied Fluency

Complete:

What does the 4 represent?
What does the 3 represent?
What does the 12 represent?
Can you think of your own story for $3 \times 4=12$?
\square Complete the table.

Picture	Multiplication	Sentence
	$4 \times 10=40$	4 lots of 10 is equal to 40
	$35=7 \times 5$	
		6 lots of 3 is equal to 18

Multiplication from Pictures

Reasoning and Problem Solving

Use Arrays

Varied Fluency

Notes and Guidance

Children explore arrays to see the commutativity of multiplication facts e.g. $5 \times 2=2 \times 5$

The use of the array could be used to help children calculate multiplication statements.

The multiplication symbol and language of 'lots of' should be used interchangeably.

Mathematical Talk

Where are the 2 lots of 3 ?
Where are the 3 lots of 2 ?
What do you notice?
What can we use to represent the eggs?
Can you draw an image?

On the image, find 2×5 and 5×2

Can you represent this array using another object?
\square Complete the number sentences to describe the arrays.

\qquad
\square Draw an array to show:
$4 \times 5=5 \times 4$
3 lots of $10=10$ lots of 3

Use Arrays

Reasoning and Problem Solving

With 12 cubes, how many different arrays can you create?

Once you have created your array complete:
\qquad \times \qquad $=$ \qquad \times

$$
\begin{aligned}
& 1 \times 12=12 \times 1 \\
& 2 \times 6=6 \times 2 \\
& 3 \times 4=4 \times 3
\end{aligned}
$$

Find different ways to solve six lots of three.

Part of this array is hidden.

The total is less than 16
What could the array be?

Count in 3 s

3 lots of 3 add 3
lots of 3
5×3 add 1×3
etc.
4×2
5×2
6×2
7×2

The 2 Times-Table

Notes and Guidance

Children should be comfortable with the concept of multiplication so they can apply this to multiplication tables.

Images, as well as number tracks, should be used to encourage children to count in twos.

Resources such as cubes and number pieces are important for children to explore equal groups within the 2 times-table.

Mathematical Talk

If $16 p$ is made using $2 p$ coins, how many coins would there be?
How many 2 s go into 16 ?
How can the images of the 5 bicycles help you to solve the problems?

Varied Fluency

Count in 2 s to calculate how many eyes there are.

There are \qquad eyes in total.
\qquad \times \qquad $=$ \qquad
D Complete the number track.

2	4		8		12
14	16	18			24

	2	4	6	8	

How many wheels are there on five bicycles?

If there are 14 wheels, how many bicycles are there?

The 2 Times-Table

Reasoning and Problem Solving

Fill in the blanks. $\begin{aligned} & 3 \times \ldots=6 \\ & Z_{X} \times 2=20 \\ & =8 \times 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 10 \\ & 16 \end{aligned}$
Tommy says that $10 \times 2=22$ Is he correct? Explain how you know.	No Tommy is wrong because 10 $\times 2=20$ Children could draw an array or a picture to explain their answer.

Eva says,	Yes, because 2 is even, and the 2 times-table is going up in 2s. When you add two even numbers the answer is always ane correct? Explain your answer. even.

The 5 Times-Table

Notes and Guidance

Children can already count in 5 s from any given number. They will also have developed understanding of the 2 timestable.

This small step is focused on the 5 times table and it is important to include the use of zero. Children should see the $=$ sign at both ends of the calculation to understand that it means 'equals to'.

Varied Fluency

\square How many petals altogether?

Write the calculation.
\square There are 35 fingers.
How many hands?
\qquad

$$
\times 5=35
$$

If there are 30 petals, how many flowers? Can you count in 5 s to 30 ? How many 5 s go into 30 ?

How many 5 s go into 35 ?
What does each symbol mean?

Use $<,>$ or $=$ to make the statements correct.

$$
\begin{gathered}
2 \times 5 \bigcirc 5 \times 2 \\
3 \times 2 \bigcirc 4 \times 5 \\
10 \times 5 \bigcirc 5 \times 5
\end{gathered}
$$

The 5 Times-Table

Reasoning and Problem Solving

Is Mo correct?	Mo is incorrect because some of the multiples of the five times- table are even, e.g. $10,20,30$
Explain your answer.	Every number in the
Tubes of tennis balls come in packs of 2 and 5	Whitney could have: 4 packs of 5 and 1 pack of 2, 11 packs of 2 and
Whitney has 22 tubes of balls.	packs of 5, 2 packs of 5 and 6 packs of 2
Have? many of each pack could she	
How many ways can you do it?	

Tommy and Rosie have both drawn bar models to show 7×5

What's the same and what is different about their bar models?

Draw your own bar model to represent 4×5

The total shown is the same.
Tommy's bar
shows seven lots
of 5 whereas
Rosie's bar show
five lots of 7

Children can
choose either way
to represent 4×5

The 10 Times-Table

Notes and Guidance

Children have counted in 10s from any given whole number. This small step is focused on the 10 times-table and it is important to include the use of zero.

Children should see the $=$ sign at both ends of the calculation to understand what it means.

Varied Fluency

How many crayons are there altogether?

\qquad $\times 10=$ \qquad

Altogether there are 30 bottles, how many walls are there?

Think of a multiplication fact for 10 s to go in each box.

Mathematical Talk

What if there were 10 packs of crayons?
If there are 50 crayons altogether, how many packets are there?
How do you know?
How many tens go into 30 ? Can you count in 10 s to 30 ?
What does greater than mean? What does less than mean?

The 10 Times-Table

Reasoning and Problem Solving

On sports day, Jack runs 10 metres, 7 times.	$10+7$ is incorrect because he has run 10 metres, 7 times, not 10 metres then 7 metres.
Which of these calculations do not describe this word problem? $\begin{aligned} & 10+7 \\ & 7 \times 10 \end{aligned}$	$\begin{aligned} & 7+7+7+7+7 \\ & +7+7+7+7 \\ & +7 \text { is incorrect } \end{aligned}$ because he does not run 7 metres each time but 10 metres.
$10+10+10+10+10+10+10$	
Explain why.	

Some Base 10 is hidden.	It could be
	$6 \times 10=60$
The total is less than 100	$7 \times 10=70$
What could the calculation be?	$8 \times 10=80$
	$9 \times 10=90$

It can't be 10×10 because 100 is not less than 100, it is equal to 100 .

