## White <br> Summer - Block 4 <br> Measurement

## Overview

## Small Steps

## NC Objectives

$\left.\begin{array}{l}\text { Compare mass } \\ \text { Measure mass in grams } \\ \text { Measure mass in kilograms } \\ \text { Compare volume } \\ \text { Millilitres } \\ \text { Litres } \\ \text { Temperature }\end{array}\right\}$

Choose and use appropriate standard units to estimate and measure length/height in any direction ( $\mathrm{m} / \mathrm{cm}$ ); mass ( $\mathrm{kg} / \mathrm{g}$ ); temperature ( ${ }^{\circ} \mathrm{C}$ ); capacity (litres $/ \mathrm{ml}$ ) to the nearest appropriate unit, using rulers, scales, thermometers and measuring vessels

Compare and order lengths, mass, volume/capacity and record the results using >, < and =

## Compare Mass

## Notes and Guidance

Children recap on Year 1 learning by comparing the mass of different objects. They will initially use balance scales to compare the mass of two or more objects.

Children compare mass using < and > and order objects based on their masses.

## Varied Fluency

Using the words 'more' and 'less' and the > or < symbols, describe the mass.


The lettuce weighs $\qquad$ than the pineapple.

## Mathematical Talk

Look at the scale, which side is lower?
What does this tell us about the objects?
Which object is heavier? Which object is lighter?
Can you hold the objects and predict which is heavier?
Is a largest object always the heaviest?

Choose three objects. Use the balance scales to order them from heaviest to lightest?


The $\qquad$ is heavier than the $\qquad$ but
lighter than the $\qquad$ -
The $\qquad$ is lighter than the $\qquad$ but
heavier than the $\qquad$ -

Complete the sentences:


4 bananas weigh the same as $\qquad$ doughnuts.
2 bananas weigh the same as $\qquad$ doughnuts

Can you write sentences using 'more’ or 'less' using the image?

## Compare Mass

## Reasoning and Problem Solving



## Measure Mass (g)

## Notes and Guidance

In Year 2, the children use standard units of mass (grams) for the first time. They continue to use balance scales before moving on to use standard weighing scales.
Children apply their counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s skills to reading scales accurately. They should see a variety of scales with different intervals. Give children the opportunity to feel the mass of gram weights so they can use this for estimation.

## Mathematical Talk

When the balance scales are level, what does this tell us?
What symbol could we use? (=)
What is the mass of the $\qquad$ ?
What would two $\qquad$ weigh?
How could you tell is something was lighter or heavier than 10g?
How much heavier is the $\qquad$ than the $\qquad$ ? How could you work it out?

## Varied Fluency

- Use gram weights to measure the mass of objects using a balance scale.

The $\qquad$ weighs $\qquad$ grams.

$\square$ Use scales to record the mass of objects in grams.

$\square$ Order the items from heaviest to lightest.


## Measure Mass (g)

## Reasoning and Problem Solving



Which is heavier, the red or the green beanbag?
Explain why.

The red beanbag weighs more
because it weighs the same as two green beanbags.


The tin of beans weighs 25 g and the pineapple weighs 30 g

## Measure Mass (kg)

## Notes and Guidance

## Varied Fluency

Children use their knowledge of measuring mass in grams to start to measure mass in kilograms.
They apply counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s to measure on different scales.
Give children the opportunity to feel the mass of kilogram weights and real life objects that weigh 1 kg so they can use this to estimate.

## Mathematical Talk

Which is heavier, one gram or one kilogram? What else do you think we might measure in kilograms?

How much do you think that you weigh? Would you measure this in grams or kilograms? Shall we estimate and then weigh ourselves?

Can you make up some different questions about the suitcases? What words can you use to compare?

Read the scales to find the mass of each.


The bag weighs $\qquad$ kg .

The person weighs $\qquad$ kg.


Sophie's family are going on holiday. Compare the mass of their suitcases.


Sophie's suitcase is $\qquad$ than Dad's suitcase
Mum's suitcase weighs $\qquad$ kg more than Dad's suitcase.

## Measure Mass (kg)

## Reasoning and Problem Solving

| What is the mass of each barrel? | Barrel A weighs 8 <br> kg |
| :--- | :--- | :--- |
| Wharrel B weighs 16 |  |
| What is the difference between the | kg |
| mass of B and C ? |  |

The brown parcel weighs twice as much as the blue parcel.
The green parcel weighs 2 kg more than 30 kg
The blue parcel weighs 12 kg less than the green parcel.

Draw an arrow to show where each parcel would be on the scale.


The green parcel weighs 32 kg

The blue parcel weighs 20 kg

The brown parcel weighs 40 kg

## Compare Volume

## Notes and Guidance

## Varied Fluency

Children compare the volume of containers using $<,>$ and $=$ They build on their understanding of the difference between capacity and volume from Year 1. Capacity is the amount a container can hold. Volume is the amount it is actually holding.

Children use the language ‘quarter', 'half' and 'three-quarters full' to describe and compare volume. Make sure children have the opportunity to practically investigate volume and capacity.

## Mathematical Talk

Which container has the largest/smallest capacity? How do you know? Can we order them from largest to smallest?

Which container has the most or least liquid in?
How many mugs does it take to fill the bottle? Is this more or less than the pot? Can we find the difference? Does the tallest container always hold the most?

Show three different containers. Which container has the largest capacity? Using water or rice, make each container: one quarter full, half full, three-quarters full.

Complete the sentences using the words 'less', 'more' or equal'.


Container $A$ has $\qquad$ than container B .

A B


Container C has $\qquad$ than container B. Container $A$ has $\qquad$ than container C
A B C
but $\qquad$ than container B .

Complete the sentences:


The bottle can fill $\qquad$ mugs.

The pot can fill $\qquad$ mugs.

Use other containers to investigate how many mugs of rice they take to fill.

## Compare Volume

## Reasoning and Problem Solving

Whitney had two full bottles of juice.
She poured some juice into two glasses.


Which glass has the most juice in?
Which has the least juice in?
Explain how you know.


Glass A has the least juice in and Glass B has more juice in. Bottle A has more juice left over which means it has less juice poured out.

The pot holds 40 cups of water.

Choose a selection of different sized containers.
Decide how you will measure how much liquid each container can hold.
Order your containers from smallest to largest.
Compare the containers using $<,>$ or =


## Millilitres

## Notes and Guidance

Children are introduced to standard units of millilitres (ml) for the first time.

They should be provided with a selection of different measuring cylinders and jugs in order to practice measuring in millilitres. They should be encouraged to estimate how many ml unlabeled containers will hold and then use measuring cylinders or jugs to check.

## Mathematical Talk

Which container has the largest/smallest capacity? Can we order them from largest to smallest?

Look at the scale on my cylinder, what do you notice? Is this the same for this cylinder?

If we pour the liquid from this jar/glass into the cylinder, how much does each container hold?

## Varied Fluency

Use a variety of different containers with ml clearly labelled e.g. measuring spoon, water bottle, liquid soap, vinegar etc. Introduce that liquid can be measured in millilitres. Discuss whether 5 ml is a large or small amount. Show 5 ml using a medicine spoon. Look at the containers estimate then identify how many ml each container holds.

Draw the level on the scale to show the capacity of each container


The container's
capacity is $\qquad$ $m l$


> The container's capacity is ___ ml

Use different containers e.g. mug, bowl, pan, tea cup. Fill them with water or rice. Pour them into a measuring cylinder and measure the amount of liquid or rice in the measuring cylinder.

## Millilitres

## Reasoning and Problem Solving

| A <br> holds 5 ml of liquid. <br> How many of liquid are there in each container? | Container A holds 12 teaspoons. <br> Container B holds 16 teaspoons. |
| :---: | :---: |

Estimate the amount of water in the container.


The water is between 40 ml and 50 ml
It is approximately 45 ml

## Litres

## Notes and Guidance

## Varied Fluency

Children are introduced to litres $(\mathrm{l})$ as a standard unit for the first time.

Children recognise the difference between measuring in millilitres and litres and when it is more efficient to use litres to measure liquid rather than millilitres. They should be encouraged to estimate volumes and then check by measuring.

## Mathematical Talk

Which is larger, 1 mililitre or 1 litre? How do you know?
Would you measure $\qquad$ in litres or millilitres? Why?

How many litres of water do you drink a day?
Show the children a litre container. How many litres of water do you think it would take to fill $\qquad$ ?

Provide a variety of different containers with litres clearly labelled e.g. cola bottle, paint bottle, milk etc.

Introduce litres and discuss how these are the same but different to millilitres. Identify how many litres fill each container.

Show how much liquid is in each cylinder after you:

- Pour 3 litres of water into the cylinder.
- Leave 1 litre of cola in the bottle.
- Pour half of the juice into the cylinder.


Use different containers e.g. bucket, large pan etc.
Estimate and then measure the capacity of each one.

## Litres

## Reasoning and Problem Solving

Mo puts 4 litres of water in bucket $A$.
He then pours 3 litres from bucket $A$ into
bucket $B$.

- There is more in bucket $A$.
- There is less in bucket $A$.
- There are equal amounts in each bucket.

Explain why.
Eva wants to measure 2 litres of water into a tub. She only has a 5 litre and a 3 litre container.


How can she use both containers to measure 2 litres?

There is less in bucket A because there will be 1 litre in A and 3 litres in B.

## Eva could fill her 5

 litre container and then empty 3 litres into the 31container. She will be left with 2 litres.
$5 l-3 \mid=2 l$

3 bowls each have more than 20 l of water in but less than 50 l

The green bowl has 51 more than the red bowl.

The blue bowl has 10 I more than the green bowl.

How much could each bowl have in?


The red bowl could have between 201 and 351

The green bowl could have between 251 and 401

The blue bowl could have
between 351 and 501

## Temperature

## Notes and Guidance

## Varied Fluency

Children are introduced to temperature, thermometers and the units 'degrees Centigrade', written ${ }^{\circ} \mathrm{C}$ for the first time. They learn that the temperature is higher when it is warmer.

They apply their counting in 2 s , 5 s and 10 s skills when reading different scales on thermometers.

## Mathematical Talk

What unit can we use to measure temperature? What is the scale going up in? How do you know? If the temperature increases what happens to the number on the scale?
If the temperature decreases what happens to the number on the scale?
Can we compare temperatures using vocabulary such as increased, decreased, warmer, colder and difference?

Take temperatures around the school and complete the following stem sentences:
The temperature in the classroom is $\qquad$ .
The classroom is $\qquad$ than the playground.
The difference in temperature between the $\qquad$ and the
$\qquad$ is
$\qquad$ degrees Celsius.

Complete the thermometers to show the temperatures.


Compare the temperatures using $<,>$ or $=$


## Temperature

## Reasoning and Problem Solving

$\left.\begin{array}{l|l|}\hline \begin{array}{l}\text { Mollie took the temperature at } 12 \text { p.m. } \\ \text { and again at } 5 \text { p.m. }\end{array} & \begin{array}{l}\text { Children may give } \\ \text { any temperatures } \\ \text { that have a } \\ \text { What could the temperatures be? }\end{array} \\ \text { difference of } 7 \\ \text { Some children } \\ \text { may realise that it } \\ \text { is usually cooler in } \\ \text { the evening and } \\ \text { therefore make } \\ \text { sure there 12pm } \\ \text { temperature is } \\ \text { always warmer } \\ \text { than the 5pm } \\ \text { temperature. }\end{array}\right\}$

> What is the same and what is different about the thermometers/temperatures?


## Both

thermometers are showing $30^{\circ} \mathrm{C}$

The scale on the first thermometer counts up in $5^{\circ} \mathrm{c}$. The scale on the second
thermometer counts up in $10^{\circ} \mathrm{C}$

The second thermometer will be able to record higher temperatures.

