White
 Autumn - Block 1
 R@se
 Maths Place Value

Overview

Small Steps

NC Objectives

Hundreds
Represent numbers to 1,000
$100 \mathrm{~s}, 10 \mathrm{~s}$ and 1s (1)
100s, 10 s and 1s (2)
Number line to 1,000
Find 1, 10, 100 more or less than a given number
Compare objects to 1,000
Compare numbers to 1,000
Order numbers
Count in 50s

Identify, represent and estimate numbers using different representations.

Find 10 or 100 more or less than a given number.

Recognise the place value of each digit in a three-digit number (hundreds, tens, ones).

Compare and order number up to 1,000.

Read and write numbers up to 1,000 in numerals and in words.

Solve number problems and practical problems involving these ideas.

Count from 0 in multiples of 4,8 , 50 and 100

Hundreds

Notes and Guidance

Children build on their understanding of tens and link this to 100
This is the first time they explore 100 explicitly. It is crucial children understand that ten tens make 100 and a hundred ones make 100
They use a variety of concrete equipment to see this relationship. Once children understand the concept of 100, they will count objects and numbers in multiples of 100 up to 1,000

Mathematical Talk

How many tens have you made? How else can we say this?
What do these digits represent?
How many ones have you made? How else can you say this?
If we continue counting in tens, what do we say after 100 ?
What numbers wouldn't we say?

Varied Fluency

Use bundles of straws in tens, bead strings and Base 10 to explore how many tens make a hundred. Children use the equipment to count up and down in tens to make 100
There are 3 tens this is thirty.
There are \qquad this is \qquad .
There are \qquad tens in one hundred.

There are 100 sweets in each jar.

How many sweets are there altogether? Write your answer in numerals and words.
\square Complete the number tracks.

Hundreds

Reasoning and Problem Solving

True or False?

If I count in 100s from zero, all of the numbers will be even.
Convince me.

Sort these statements into always, sometimes or never.

- When counting in hundreds, the ones column changes.
- When counting in hundreds, the hundreds column changes.
- To count in hundreds we use 3-digit numbers.
Sort these statements into always,
sometimes or never.

```
True, because if
you start with zero
and add 100 you
get an even
number, and you
are adding another
even so the
number will
always be even.
```

- Never
- Always
- Sometimes

Whitney thinks the place value grid is Whitney is showing the number eight.

Hundreds	Tens	Ones
$\bigcirc \bigcirc \bigcirc$		
$\bigcirc \bigcirc$		
$\bigcirc \bigcirc \bigcirc$		

Do you agree? Explain why.
Using all of the counters, what is the smallest number you can make?

What other numbers could you make?

incorrect because

there are eight
counters in the
hundreds column
so they represent
eight hundreds.
The number is
800
The smallest number that can
be made is 8

Other possible numbers include:
80
170
350
etc.

| numbers. | |
| :--- | :--- | :--- |

Numbers to 1,000

Notes and Guidance

In this small step, children will primarily use Base 10 to become familiar with any number up to 1,000

Using Base 10 will emphasise to children that hundreds are bigger than tens and tens are bigger than ones.

Children need to see numbers with zeros in different columns, and show them with concrete and pictorial representations.

Mathematical Talk

Does it matter which order you build the number in?
Can you have more than 9 of the same type of number e.g. 11 tens?

Can you create a part-whole model using or drawing Base 10 in each circle?

Varied Fluency

Write down the number represented with Base 10 in each case.

Use Base 10 to represent the numbers.
700
120
407
999
Mo is drawing numbers. Can you complete them for him?

246	390	706
$\square / / / /$	$\square / / /$	$\square \square$

Numbers to 1,000

Reasoning and Problem Solving

Teddy has used Base 10 to represent the
number 420. He has covered some of
them up.
:---
amount.
Possible ways:
1 hundred and
1 ten

11 tens
110 ones

10 | 10 tens and 10 |
| :--- |
| ones |
| 50 ones and 6 |
| tens etc. |

Work out the amount he has covered up.

Which child has made the number 315?

Explain how you know.

Dora and Mo have both made the number 315, but represented it differently.

3 hundreds, 1 ten and 5 ones is the same as 2 hundreds, 10 tens and 15 ones.

$100 \mathrm{~s}, 10 \mathrm{~s}$ and 1s (1)

Notes and Guidance

Varied Fluency

Children should understand that a 3-digit number is made up of $100 \mathrm{~s}, 10 \mathrm{~s}$ and 1 s .

They read numbers shown in different representations on a place value grid, and write them in numerals.

They should be able to represent different 3-digit numbers in various ways such as Base 10 or numerals.

Mathematical Talk

What is the value of the number shown on the place value chart?

Why is it important to put the values into the correct column on the place value chart?

How many more are needed to complete the place value chart?

Can you make your own numbers using Base 10? Ask a friend to tell you what number you have made.

What is the value of the number represented in the place value chart?

Hundreds	Tens	Ones

Write your answer in numerals and in words.
\square Complete this place value chart so that it shows the number 354

Hundreds	Tens	Ones
		e

Represent the number using a part-whole model.
How many different ways can you make the number 452? Can you write each way in expanded form? (e.g. $400+50+2$)

Compare your answer with a partner.

$100 \mathrm{~s}, 10 \mathrm{~s}$ and 1 s (1)

Reasoning and Problem Solving

Using each digit card, which numbers can you make?

Use the place value grid to help.

Compare your answers with a partner.

The numbers that can be made are:

- 503
- 530
- 305
- 350
- (0)35
- (0)53

Is Eva correct? Explain your reasoning.
What do you notice about the number shown?

Possible answers:
I disagree because there are six hundreds, four tens and seven ones so the number is 647 .

I notice that 647 and 467 have the same digits but in a different order so the digits have different values.
\qquad

$100 \mathrm{~s}, 10 \mathrm{~s}$ and 1s (2)

Notes and Guidance

Children use place value counters to represent different numbers and understand how a number is made.

Their work with Base 10 should help them understand that the hundreds counter is worth more than the tens counter and the tens counter is worth more than the ones counter.

Mathematical Talk

What is the same and what is different about Base 10 and place value counters?
Why do we not call this number 300506 ?
What number would be shown if $1 / 10 / 100$ was added?
Why is it important to put the values into the correct column on the place value grid?

What do we need to do if there is a zero in the number we are representing?

Varied Fluency

What number is shown on the place value chart?

Hundreds	Tens	Ones
100		

If one more 10 is added, what number would be shown?
Use place value counters and a place value grid to represent the numbers:

$$
\begin{array}{lll}
615 & 208 & 37
\end{array}
$$

Use $<,>$ or $=$ to make the statement correct.

$100 \mathrm{~s}, 10 \mathrm{~s}$ and 1 s (2)

Reasoning and Problem Solving

She thinks you need to have at least one counter in each column.
e.g. four hundreds counters and 5
tens counters. As a calculation this would be:
$450=100+100$
$+100+100+$
$10+10+10+$
$10+10$

Eva is incorrect because you could make 800 which is greater than 611
neeu cotiavean

Who is correct? Explain your reasoning.

Do you agree? Explain your answer.

Dora is correct because there are six counters in the hundreds column, none in the tens column and seven in the ones column.

If it was 670 there would be seven counters in the tens column and none in the ones column.

Number Line to 1,000

Notes and Guidance

Varied Fluency

Children estimate, work out and write numbers on a number line.

Number lines should be shown with or without start and end numbers, and with numbers already placed on it.

Children may still need Base 10 and/or place values to work with as they develop their understanding of the number line.

Mathematical Talk

What is the value of each interval on the number line? Which side of the number line did you start from? Why? When estimating where a number should be placed, what facts can help you?
Can you draw a number line where 600 is the starting number, and 650 is half way along?
What do you know about the number that A is representing? A is more/less than \qquad -
What value can A definitely not be? How do you know?

Estimate the value of A .

Number Line to 1,000

Reasoning and Problem Solving

If the arrow is pointing to 780, what could the start and end numbers be?	Example answers: Find three different ways and explain your reasoning.	Start 0 and end 1,000 because 500 would be in the middle and 780 would be further along than 500

1,10, 100 More or Less

Notes and Guidance

Building on children's learning in Year 2 where they explored finding one more/less, children now move onto finding 10 and 100 more or less than a given number.

Show children that they can represent their answer in a variety of different ways. For example, as numerals or words, or with concrete manipulatives.

Mathematical Talk

What is 10 more than/less than \qquad ?

What is 100 more than/less than \qquad ?

Which column changes? Can more than one column change?
What happens when I subtract 10 from 209?
Why is this more difficult?

Varied Fluency

Put the correct number in each box.

Number

Number

10 more

Show ten more and ten less than the following numbers using Base 10 and place value counters.
$550 \quad 724$
\square Complete the table.

100 less	Number	100 more
		\square
		\square

1, 10, 100 More or Less

Reasoning and Problem Solving

10 more than my number is the same as 100 less than 320	The number described is 210
What is my number?	than 320 is 220 , which means 220
Explain how you know.	is 10 more than the original
Write your own similar problem to describe the original number.	number.
I think of a number, add ten, subtract one hundred and then add one.	The start number was 345 because one less than 256
My answer is 256	is 255 , one hundred more
What number did I start with?	than 255 is 355 and ten less than
Explain how you know.	355 is 345
What can you do to check?	To check I can follow the steps back to get 256

What number could it have been?

Compare Objects

Notes and Guidance

Children use objects to represent numbers to 1,000 When given two numbers represented by objects, they use comparative language and symbols to determine which is greatest/smallest. Children can make the numbers using concrete manipulative and draw them pictorially. Use stem sentences to ensure the correct vocabulary is being used e.g. \qquad is greater than \qquad _.

Mathematical Talk

How do you know which number is greater?
Do you start counting hundreds, tens or ones first? Why?
What strategy did you use to compare the two numbers? Is this the same or different to your partner?

Are the Base 10 and place value counters showing the same amount? How do you know?

Is there only one answer?

Varied Fluency

Represent and compare the numbers using place value counters.

100 s	10 s	1 s

$$
452
$$

Use $<,>$ or $=$ to make the statements correct.

Draw objects to make the statement true.

Compare Objects

Reasoning and Problem Solving

Explain why.

How else can you represent the number?

\section*{| True or False? | The image is not |
| :--- | :--- |} correct because the number 244 is represented on both sides of the inequality symbol.

An equal sign should have been used.

The number on the left must be made larger or the number on the right must be made smaller, to make this true.

Compare Numbers

Notes and Guidance

Varied Fluency

Children compare numbers presented as numerals rather than objects.
They need to be encouraged to use previous learning to choose an efficient method to compare the numbers. For example, children may choose to place the numbers on a number line, make them using concrete manipulatives or draw them in a place value chart to compare.

Mathematical Talk

What strategy did you use to compare the numbers?
What materials would be useful to help you compare the numbers?

How do you know which number is the smallest /greatest? Which column do you start comparing from? Why?

$$
600+70+4>600+\ldots+4
$$

Two hundred and five < \qquad
Can you find more than one way to complete the statements?

Compare Numbers

Reasoning and Problem Solving

Amir has 3 jars of sweets. | Jar B could |
| :--- |
| contain any |
| number of sweets |
| between 176 and |
| 234 inclusive. |

Order Numbers

Notes and Guidance

Children explore ordering a set of numbers from smallest to greatest and greatest to smallest. They need to be able to explain their reasoning throughout. They could still use Base 10 or other concrete materials to help them to make decisions about ordering.

At this point, children are introduced to the words ascending and descending.

Mathematical Talk

How do you know you have created the greatest/smallest number?

What number is being represented by the place value counters/Base 10?

What does the word ascending/descending mean?
Can you find more than one way to order your numbers?

Varied Fluency

Here are three digit cards.

What is the greatest number you can make?
What is the smallest number you can make?
Use the symbols $<,>$ or $=$ to make the statement correct.

(20) ©

 102

\square Here is a list of numbers.

$$
\text { 312, 321, 123, 132, 213, } 231
$$

Place the numbers in ascending order.
Now place them in descending order.
What do you notice?

Order Numbers

Reasoning and Problem Solving

Whitney has six different numbers.	The first number could be anything between 215 and She put them in ascending order then accidentally spilt some ink onto her page. Two of her numbers are now covered in ink.
242	
The second hidden number could be anywhere between 257 and $214, ~ 288$	
What could the hidden numbers be?	
Explain how you know.	

True or False?

When ordering numbers you only need to look at the place value column with the highest value.

False.
For example, if you are ordering numbers in the hundreds you should start by looking at the hundreds column, but sometimes two numbers will have the same number of hundreds and so you will also need to look at other columns.

Count in 50s

Notes and Guidance

Children use their knowledge of the patterns in the 5 times table to count in steps of 50

They should start from any given multiple of 50 and be able to count both forwards and backwards.

Mathematical Talk

What is the same and what is different between counting in 5 s and counting in 50 s?

Hence, what is the connection between the 5 times table and the 50 times table?

Can you notice a pattern as the numbers increase/decrease?
Can you correct the mistakes in each?

Varied Fluency

Look at the number patterns.
What do you notice?

5	10	15	20	25	30

50	100	150	200	250	300

\square Complete the number tracks.

50		150	200			350		450	

	750	700	650			500			350

\square Circle and explain the mistake in each sequence.
$50,100,105,200,250,300 \ldots$
990, 950, 900, 850, 800 ...

Count in 50s

Reasoning and Problem Solving

\(\left.\left.$$
\begin{array}{l|l|}\hline \text { Odd One Out } & \begin{array}{l}215 \text { is the odd one } \\
\text { out because it is } \\
\text { not a multiple of } \\
50\end{array} \\
\text { If we were } \\
\text { counting up in 50s } \\
\text { from 100, it should } \\
\text { have been 250 200, 215, 300 } \\
\text { not 215 }\end{array}
$$\right\} $$
\begin{array}{l}\text { Circle the odd one out. Explain how you } \\
\text { know. }\end{array}
$$ \quad \begin{array}{l}It is quicker to

count to 150 in

50 s as it would

only be 3 steps

whereas counting

to 50 in 10s would

be 5 steps.\end{array}\right\}\)| Which is quicker: counting to 50 in 10s orcounting to 150 in 50s? |
| :--- |
| Explain your answer. |

Always, Sometimes, Never

Sort the statements into always, sometimes or never.

- When counting in 50 s starting from
- Always
- There are only two digits in a
- Sometimes
multiple of 50
- Only the hundreds and tens column
- Sometimes

