White
 Summer - Block 3
 R@se Maths
 Properties of Shape

Year 3

Overview

Small Steps

NC Objectives

Recognise angles as a property of shape or a description of a turn.

Identify right angles, recognise that two right angles make a half-turn, three make three quarters of a turn and four a complete turn; identify whether angles are greater than or less than a right angle.

Identify horizontal and vertical lines and pairs of perpendicular and parallel lines.

Draw 2-D shapes and make 3-D shapes using modelling materials.

Recognise 3-D shapes in different orientations and describe them.

Turns and Angles

Notes and Guidance

Children recognise angles as a measure of a turn. They practice making $\frac{1}{2}, \frac{1}{4}, \frac{3}{4}$ and whole turns from different starting points in both clockwise and anti-clockwise directions in practical contexts. They should listen to/follow instructions and also give instructions using the correct mathematical language in different contexts. Children understand that an angle is created when 2 straight lines meet at a point.

Mathematical Talk

If we start by facing \qquad and make a \qquad turn, what direction will we be facing? If we face \qquad and turn to face \qquad what turn have we made?
If we face north and make a quarter turn clockwise, which direction will we be facing? What if we turn anti-clockwise? What would the time be if the minute hand started at 1 , then made a quarter of a turn?
Can you see any angles around the classroom?

Varied Fluency

Take children outside or into the hall where they can practice moving in turns themselves. Label 4 walls/points (for example: North, South, East, West).
Give children instructions to encourage them to make $\frac{1}{2}, \frac{1}{4}, \frac{3}{4}$ and whole turns from different starting points. Allow children the opportunity to give instructions too.

Look at the hands of the clock.
Turn the minute hand one quarter of a turn clockwise.
Where is the large hand pointing?
What is the new time?

What turn has the minute hand made?

Tick the images where you can see an angle.
Explain your choices.

Turns and Angles

Reasoning and Problem Solving

The letter ' X ' has four angles.

Write your name in capital letters. How many angles can you see in each letter?
How many angles are there in your full name?

Answers will vary depending on the children's names.

Right Angles in Shapes

Notes and Guidance

Children recognise that a right angle is a quarter turn, 2 right angles make a half-turn, 3 right angles make three-quarters of a turn and 4 right angles make a complete turn.

Children need to see examples in different orientations so that they understand that a right angle does not have to be made up of a horizontal and vertical line.

Mathematical Talk

How many right angles make a half turn/three-quarter turn/ full turn?
Where can you see a right angle in the classroom/ around school/ outside?
Which shapes contain right angles?
Can you think of a shape which doesn't have any right angles? How many right angles does a \qquad have?
Can you draw a shape with \qquad right angles?
What headings would we place in our table?

Varied Fluency

Give children a clock each so they can practice making turns. Start with the hands showing 12 o'clock, move the minute hand one quarter of a turn.

The angle between the hands is called a \qquad angle.
One quarter turn is equal to a
\qquad angle.
\square Children can create a 'Right Angle Tester' E.g.
They can then go on a right angle hunt around school.
Find and draw at least 3 right angles you have seen around your school.

Sort the shapes based on the number of right angles they have. Record your answer in a table.

Right Angles in Shapes

Reasoning and Problem Solving

How many right angles can you see in this image?

Can you create your own image with the same number of right angles?

There are 34 right angles.

Compare Angles

Notes and Guidance

Children identify whether an angle is greater than or less than a right angle in shapes and turns, by measuring, comparing and reasoning in practical contexts.

Children are introduced to the words 'acute' and 'obtuse' as a way of describing angles.

Mathematical Talk

What is an acute? (Give 3 examples of acute angles and ask them to identify what's the same about them. Draw out that they are all smaller than a right-angle).
What's an obtuse angle? (Repeat activity by giving 3 examples of obtuse angles).
Can you give me a time where the hands on the clock make an acute/obtuse angle?
Can you see an acute/obtuse angle around the classroom? Can you draw me a shape that contains acute/obtuse angles?

Varied Fluency

The angle between the hands is
\qquad
This is called an \qquad angle.

The angle between the hands is
\qquad than a right angle.
This is called an \qquad angle.

Explore other times where the hands make an acute/obtuse angle.
\square Find 3 acute angles and 3 obtuse angles in your classroom. Use your 'Right Angle Tester' to check.

Label any acute or obtuse angles in these images.

Compare Angles

Reasoning and Problem Solving

Draw Accurately

Notes and Guidance

Children measure and draw straight lines accurately in centimetres and millimetres. They also practice rounding measurements to the nearest centimetre.
Make sure the children correctly position the ruler when measuring/drawing the line, by lining up the 0 with the start of the line.

Varied Fluency

Measure these lines. Record your measurements in cm and mm .
\qquad
\qquad
\qquad cm and mm

Mathematical Talk

Where should we position the ruler when measuring each line? Why?

How long is each line in millimetres?
Why does 9 cm and 9 mm round to 10 cm and not 9 cm ? Look at the ruler/number line to explain your answer.

Do we round 10 cm and 5 mm to 10 cm or 11 cm ? Why?

Draw straight lines that measure exactly:
$12 \mathrm{~cm} \quad 8 \mathrm{~cm}$ and 5 mm
9 cm and $8 \mathrm{~mm} \quad 14 \mathrm{~cm}$ and 2 mm

It measures \qquad cm to the nearest centimetre.
Draw a line for each of the measurements.

$$
\begin{array}{ll}
5 \mathrm{~cm} \text { and } 2 \mathrm{~mm} & 13 \mathrm{~cm} \text { and } 8 \mathrm{~mm} \\
0 \mathrm{~cm} \text { and } 9 \mathrm{~mm} & 10 \mathrm{~cm} \text { and } 3 \mathrm{~mm}
\end{array}
$$

What would each line measure to the nearest centimetre?

Draw Accurately

Reasoning and Problem Solving

She says it is 10 cm 4 mm
Is Alex correct?
Explain why.

Alex is not correct because she has started measuring the line from the end of the ruler instead of from ' 0 '

Use straight lines to show the route the car could take to get out of the maze.

Work out the length of the route to the nearest cm

Is this the shortest route?

Possible answer:

The length of the route will depend on the size of the maze used.

Horizontal \& Vertical

Notes and Guidance

Varied Fluency

Children identify and find horizontal and vertical lines in a range of contexts.

They identify horizontal and vertical lines of symmetry in shapes and symbols.

A line that runs from left to right across the page is called a line.

A line that runs straight up and down the page is called a
\qquad line.

Find 3 horizontal and 3 vertical lines in the classroom.

Mathematical Talk

What can you use to help you remember what a horizontal line looks like? (The horizon)
Can you see horizontal and vertical lines around the classroom?
What do we call a line that is not horizontal or vertical?
Which shapes/symbols/letters have a horizontal/vertical line of symmetry?
Which have both?
Can you draw your own shape that has a horizontal and vertical line of symmetry?

Label the horizontal and vertical lines in each of these images.

Sort the shapes/symbols/letters depending on whether they have a horizontal line of symmetry, a vertical line of symmetry or both.

Horizontal \& Vertical

Reasoning and Problem Solving

Horizontal line of symmetry	Vertical line of symmetry	Horizontal and vertical lines of symmetry
\square		

Eva completes the table by drawing shapes.

Can you spot and correct her mistake?

Eva thinks the star has both lines of symmetry, but it only has a vertical line of symmetry.

How many horizontal and vertical lines can you spot in this image by Mondrian?

Create your own piece of art work using only horizontal and vertical lines.

There are 5 horizontal lines and 8 vertical lines.

Parallel \& Perpendicular

Notes and Guidance

Children identify and find parallel and perpendicular lines in a range of practical contexts.
They use the arrow notation to represent parallel lines and the right angle notation for perpendicular lines.
Ensure that children are presented with lines that are not horizontal and vertical.
Children may need to use their right-angle tester to help them check that lines are perpendicular.

Mathematical Talk

Where might you see sets of parallel lines in the environment?
Can you see sets of parallel and perpendicular lines around the classroom?

Which shapes have only parallel lines?
Which shapes have perpendicular lines?
Which shapes have both parallel and perpendicular lines?

Varied Fluency

Lines that never meet are called \qquad lines.

Straight lines that meet at a right angle are called
\qquad lines.

Find 3 sets of parallel and perpendicular lines in the classroom.
Draw a line that is parallel to this one.
Draw a line that is perpendicular to this one.
Use arrows to show the parallel lines in these shapes.
Use the right angle notation to show the perpendicular lines.

Parallel \& Perpendicular

Reasoning and Problem Solving

True or False?

Line $A B$ is parallel to line $C D$.
Line $A C$ is parallel to line $B D$.
Line $A C$ is perpendicular to line $C D$.
Redraw the shape so that line $B D$ is perpendicular to line CD.

These lines are NOT parallel.

Convince me.

Mark 3 sets of parallel lines and 3 sets of perpendicular lines in this flag.

Design your own flag containing parallel and perpendicular lines.

For example.

2-D Shapes

Notes and Guidance

Children recognise, describe and draw 2-D shapes accurately. They use properties including types of angles, lines, symmetry and lengths of sides to describe the shape.
They could be given opportunities to identify/draw a hidden shape from a description given and also describe a shape for a friend to identify/draw.

Mathematical Talk

How many angles does a \qquad have?
What types of angles does a \qquad have?
How many lines of symmetry does a \qquad have?
What kind of lines of symmetry does a \qquad have? (vertical/horizontal)
What types of lines can you spot in a \qquad ?
(perpendicular/parallel)
Can you guess the shape from the description given? Can you draw a shape from the description given?

Varied Fluency

\square Describe this quadrilateral.
It has \qquad angles.

It has \qquad
It has \qquad
It has \qquad acute angle.
It has \qquad
right angles. obtuse angle. lines of symmetry.
\square Choose one of these 2-D shapes and describe it to a friend thinking about the angles, types of lines it is made up of and whether it has any lines of symmetry. Can your friend identify the shape from your description?

\square Draw the following shapes.

- A square with sides measuring 2 cm
- A square that is larger the one you have just drawn
- A rectangle with sides measuring 4 cm and 6 cm
- A triangle with two sides of equal length

2-D Shapes

Reasoning and Problem Solving

3-D Shapes

Notes and Guidance

Varied Fluency

Children recognise and describe 3-D shapes in different orientations. They use properties including the number of faces, edges and vertices to describe the shape. Where a shape has a curved surface, children should know that this is not called a face. e.g. a cylinder has 2 circular faces and a curved surface. Teachers should explore the difference between a prism, which has the same shape all the way through, and a pyramid, which tapers to a point.

Mathematical Talk

How many faces/edges/vertices/curved surfaces does a
\qquad have?
What shape are the faces of a \qquad ?
What types of lines can you see on a \qquad ?
Can you spot objects around the classroom that are cubes/cuboids etc.?
Can you guess the shape from the description given?

This shape is a \qquad -
It has \qquad faces.
It has \qquad edges.
It has \qquad vertices.
\square Choose one of these 3-D shapes and describe it to a friend thinking about the number and shape of faces it has and the number of edges and vertices. Can your friend identify the shape from your description?

What is the same and what is different about these two shapes?

Choose two other shapes and say what is the same and what is different about them.

3-D Shapes

Reasoning and Problem Solving

Mo has a 3-D shape, he says,	Possible answers: Cube Cuboid Square based pyramid
What could Mo's shape be?	One face of my 3-D shape is a square.
Allex says, Do you agree with Alex? Explain why.	I do not agree with Alex e.g. cones pyramids, spheres are not prisms.
ars.	

Sort a selection of 3-D shapes using the
criteria in the table.
At least one triangular face
No triangular faces
Prism
Not a prism

Change the headings of the table and resort your shapes.

Various

possibilities depending on the shapes used.

Construct 3-D Shapes

Notes and Guidance

Children make 3-D shapes (cubes, cuboids, prisms, cylinders, pyramids, cones, spheres) using construction materials.

They use correct mathematical language to describe the shapes they have made (edges, faces, vertices, curved surfaces).

Varied Fluency

\square Children make a 3-D shape using Play-Doh/clay/plasticine/ polydron.
Ask them to make a different one to their partner.
Write down the similarities and differences between them.
Discuss what the properties of each shape are.
\square Use straws and Play-Doh to create a model of a cube.

Mathematical Talk

Can you describe your shape using edges, faces, vertices, curved surfaces?
What is the same and what is different about your shape compared to your partner's?
What do the straws represent?
What does the Play-Doh represent?
How many straws/balls of Play-Doh do you need to create a
\qquad ?
Why can't you create a sphere or cylinder using this technique?

What other 3-D shapes can you create?
\square Cut and fold these into 3-D shapes.

What shapes have you created?

Construct 3-D Shapes

Reasoning and Problem Solving

I have 9 straws and 6 balls of Play-Doh.

What 3-D shape can I create using all of the straws and Play-Doh? Have a go at making it.

True or false?

- You can cut out lots of equal squares and make a 3-D shape from them.
- You can cut out some circles and rectangles and make a 3-D shape from them.

Explain the mistake Rosie has made.
How many straws and balls of Play-Doh would you need to create a pyramid?

Rosie thinks that because a pyramid has some triangular faces she will only need 3 straws/balls of Play-Doh.

You would need 8 straws and 5 balls of Play-Doh to make a squarebased pyramid, and 6 straws and 4 balls of PlayDoh to make a triangle based pyramid.

