المدرسـة الوطنيـة الدوليـة
صندوق بريد 22698

40174930 هـاتف
info@awisdoha.com
fo@awisdoha.com

Power Maths Key Vocabulary

Year 5 - Block C

Key Vocabulary	Explanation of Terms	Example Question(s)
angle	An angle is a measure of a turn, measured in degrees or ${ }^{\circ}$. There are 360° in a full turn. You can find out the size of an angle using a protractor.	- What is an angle? - Can you identify an acute angle on the clock? - Can you identify an obtuse angle? What do we call angles larger than 180° but smaller than 360° ? Which angle is the odd one out? 45° 79° 270° Could another angle be the odd one out for a different reason?
protractor	A protractor is an instrument in the form of a semicircle, used for plotting and measuring angles.	Who do you agree with? Explain why. (They are both correct. It doesn't matter which way the protractor is as long as it is placed on the angle correctly.)

obtuse	An obtuse angle has a measurement greater than 90 degrees but less than 180 degrees.	Rosie is measuring an obtuse angle. Examples of obtuse angles are: 100°,
$120^{\circ}, 140^{\circ}, 160^{\circ}, 170^{\circ}$ etc.		

right angle	A right angle is equal to 90°, one quarter of a full revolution. We can find the right angles in shapes. A square or rectangle has four corners with right angles. All triangles with one angle right are called right-angled triangles.	Use the sentence stems to describe the turns made by the minute hand. Compare the turns to a right angle. The turn from \qquad to \qquad is \qquad than a right angle. It is an \qquad angle.
whole turn	A whole turn is when a line has turned the whole way around, returning to its original position. This is a 360° turn.	Can you draw a line which is...

interior angle	An interior angle is inside a shape, between 2 joined sides.	Calculate the missing angles:
clockwise anticlockwise	Moving in the direction of hands on a clock is called clockwise. The opposite directions is anticlockwise. Clockwise Anti-Clockwise	Pick a starting point on the compass and describe a turn to your partner. Use the mathematical words to describe your turns: - clockwise - anti-clockwise - degrees - acute - obtuse - reflex - right angle Can your partner identify where you will finish? Can you draw a line which is...

		A three quarter turn clockwise A three quarter turn anti-clockwise
parallel	Parallel lines are two lines that are always the same distance apart and never touch. In order for two lines to be parallel, they must be drawn in the same plane, on a perfectly flat surface like a wall or sheet of paper.	Circle the pairs of parallel lines. Draw lines which are parallel to each of these lines. How many pairs of parallel lines do these shapes have?
perpendicular	Perpendicular lines are defined as two lines that meet or intersect each other at right angles $\left(90^{\circ}\right)$.	Circle the pairs of perpendicular lines. Draw lines which are perpendicular to each of these lines.

		How many pairs of perpendicular lines do these shapes have?
metric	The metric system is a system of measurement that uses the meter, litre, and gram as base units of length (distance), capacity (volume), and weight (mass).	Using a metric measurement, can you measure the length of your table? In metric units, what is your height and weight? Complete the missing information. $\frac{1}{10}$ kilogram $=$ \square grams $\begin{aligned} & 7 \mathrm{~kg}+\frac{1}{4} \mathrm{~kg}=\square \mathrm{g} \\ & \frac{3}{10} \mathrm{~km}=\square \text { metres } \\ & 12 \mathrm{~km}+\square \mathrm{km}=12,500 \mathrm{~m} \\ & (100 \mathrm{~g}, 7,250 \mathrm{~g}, 300 \mathrm{~m} 0.5 \mathrm{~km}) \end{aligned}$
imperial	Miles, feet and inches are old units of length. These are known as imperial units of length but are not now commonly used in maths. There are 12 inches in a foot. An inch is roughly equal to 2.5 centimetres. Imperial units: Length: inches, feet, yards Area: square feet, acres Weight: pounds, ounces Volume: gallons, pints	What is the length of this desk in feet and inches? How many pounds of butter do you have? How many pounds are there in 4 kg ? (roughly 8)
length/distance millimetre (mm)	Length measures how far it is from one end to another, or from one point to another. The length of an object is the	I won the long jump at District Sports, with a jump of 3.7 m .

$\begin{aligned} & \hline \text { centimetre (cm) } \\ & \text { metre (m) } \\ & \text { kilometre (km) } \end{aligned}$	greatest of the two or three dimensions of an object. The metric system of length is shown below: $\begin{aligned} & 1 \mathrm{~km}=1000 \mathrm{~m} \\ & 1 \mathrm{~m}=100 \mathrm{~cm} \\ & 1 \mathrm{~cm}=10 \mathrm{~mm} \end{aligned}$	The person who came second jumped 2.8 m . How much further did I jump? (0.9m) It is approximately 13 km from Newthorpe to Nottingham City Centre. - How many m is this? - How far would a journey to, and from, Newthorpe be? ($13,000 \mathrm{~m}, 26 \mathrm{~km}$ or $26,000 \mathrm{~m}$) The perimeter of an octagon is 96 cm . What is the length of each side, in both cm and mm ? ($12 \mathrm{~cm}-120 \mathrm{~mm}$)
volume height width length	Volume is the amount of 3-dimensional space something takes up (also known as the capacity). Volume $=$ length x width x height Volume is measured in cubic units. Volume of Cube Volume of cube with side lengths s $V=s \times s \times s=s^{3}$	How many possible ways can you make a cuboid that has a volume of $12 \mathrm{~cm}^{3}$? My shape is made up of 10 centimetre cubes. The height and length are the same size. What could my shape look like?

capacity litre (I) millilitre (ml)	Capacity is the amount something can hold. This is measure in litres (I) and millilitres (ml).	Use a variety of containers. Can you estimate how much liquid they hold? Check your estimates using measuring jugs and cylinders to see how accurate you were. Use the clues to work out who has which container. (Annie has container B, Ron has container A, Eva has container C)

