White
 Spring - Block 1
 R@se Maths
 Addition \& Subtraction

Overview

Small Steps

NC Objectives

Represent and use number bonds and related subtraction facts within 20

Read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs.

Add and subtract one-digit and twodigit numbers to 20 , including zero.

Solve one step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=\square-9$

Add by Counting On

Notes and Guidance

Varied Fluency

Children explore addition by counting on from a given number. They begin to understand that addition is commutative and that it is more efficient to start from the largest number. It is important that children see that they are not just adding two separate numbers or items, they are adding to what they already have.
Ensure children do not include their start number when counting on.

Mathematical Talk

What number did you start with? Then what happened? Now what do I have?

What does each number represent? What do the counters represent?

How can I represent counting on using practical equipment? How can I represent counting on using a bar model or a number line?

Use ten frames to complete the number story.

First there were \qquad cars in the car park.
Then \qquad more cars parked in the car park. Now there are \qquad cars in the car park.
\square Eva has 13 prize tokens.
She wins 5 more.
How many prize tokens does Eva have now?

Mo starts at 9 and counts on 6

$$
9+6=
$$

\square Show his calculation on the number line.

Add by Counting On

Reasoning and Problem Solving

Use the diagram and counters to tell your own number story for these calculations: $\begin{aligned} 0+12 & = \\ 7+0 & = \\ 14+\ldots & =17 \end{aligned}$	Children can come up with a range of contexts where they have an amount that is increasing. Using 'First, then and now' they describe it.
Mo and Jack are working out $11+7$	Jack is correct as he has counted on 7 steps from 11 Mo has incorrectly included 11 when counting.
$\text { 11, 12, 13, 14, 15, 16, } 17$	
Jack says, $12,13,14,15,16,17,18$	
Use a number line to show who is correct.	

Ron starts at 9 and adds on 5 Alex starts at 5 and adds on 9 Show their calculations on the number lines. What do you notice? Does this always happen?	Both children end on 14 This is because $9+5$ is equivalent to $5+9$
Which method do you like best? Why? \qquad \qquad	The children can explore their own calculations to understand that addition is always commutative. They see that Ron's method is quicker because there is less to count on.

Find \& Make Number Bonds

Notes and Guidance

Children see that working systematically helps them to find all the possible number bonds to 20
They will use their knowledge of number bonds to 10 to find number bonds to 20
Using examples such as, $7+3,17+3$ or $7+13$ encourages children to see the link between bonds to 10 and bonds to 20 and reinforces their understanding of place value.

Mathematical Talk

What strategy could you use to make sure you find all the number bonds?

What number bond can we see? How does this help us find the number bond to 20 ?

How does knowing your number bonds to 10 help you to work out your number bonds to 20?

Varied Fluency

What number bond is represented in the pictures?

There are \qquad red counters.
There are \qquad blue counters.
Altogether there are \qquad counters.
\qquad
\qquad
\qquad
\qquad $+$ \qquad $=$ \qquad There are \qquad red counters.
There are \qquad blue counters.
\qquad counters.
\qquad $+$ \qquad = \qquad ${ }_{-}+\ldots=$
\square Continue the pattern to find all the number bonds to 12 How do you know you have found them all?

$$
\begin{aligned}
& 12=12+0 \\
& 12=11+ \\
& 12=10+\ldots
\end{aligned}
$$

Find \& Make Number Bonds

Reasoning and Problem Solving

Use equipment to represent each of the calculations below. What is the same? What is different? $\qquad 7+3=10$ $\qquad 20=7+13$ Explain your thinking.Children may notice that the $=$ is in a different place. They might notice that the number of ones remains the same and that a ten has been added to create a number bond to 20
Mathematical equipment such as ten frames or Base 10 will make this clear.

Jack represents a number bond to 20 in the part whole model.

Can you spot his mistake?

True or false?

There are double the amount of numbers bonds to 20 than there are number bonds to 10

Prove it - can you use a systematic approach?

Possible response: Jack has put 20 as a part but it should be a whole.

False - there are
11 number bonds
to 10 and 21
number bonds to
20 Children can
show this in
various ways.

Add by Making 10

Notes and Guidance

Varied Fluency

Children add numbers within 20 using their knowledge of number bonds.
It is important that children work practically using ten frames and/or number lines to help them see how number bonds to 10 can help them calculate.
They will move towards using this as a mental strategy

Mathematical Talk

How can you partition a number and use your number bonds to 10 to help you?

How does using the counters help you to see this strategy?
How does using a number line help you to see this strategy?
\square Rosie has used the 10 frames to calculate $6+7$

Use Rosie's method to complete:

Mo has used a number line to calculate $6+8$

Use Mo's method to calculate:

$$
5+8=\square \quad 9+4=\square
$$

Add by Making 10

Reasoning and Problem Solving

Dexter uses ten frames to calculate eight

plus six. | Dexter is wrong |
| :--- |
| because the |
| answer should be |
| 14. . He should have |
| filled the first ten |
| frame before |
| starting a second |
| one. |

Subtraction - Not Crossing 10

Notes and Guidance

Children build on the language of subtraction, recognising and using the subtraction symbol within 20

The use of zero is important so children know that when nothing is taken away, the start number remains the same or when the whole group is taken away, there will be nothing left.

They will also use the part-whole model alongside practical equipment to reinforce number bonds within 20

Mathematical Talk

How many objects were there at first? Then what happened to the objects? How many objects are there now?

If Mo ate nothing, what number would we use to represent this? How do we write this as a calculation? What does the zero represent in this calculation?

If Mo ate all of the biscuits, what number would we be left with? How do we write this as a calculation? What does the zero represent in this calculation?

Varied Fluency

There are 16 biscuits on a plate. Mo eats 5 of them.
Complete the sentences.
First there were \qquad biscuits.
Then \qquad were eaten.
Now there are \qquad biscuits.

$$
16-5=
$$

\qquad
\square First there were 9 sheep. Then they all ran away.
How many sheep are left?
Use ten frames and counters to represent the sheep.

Use the number pieces and the number line to complete the number sentences.

Use this method to calculate:
20-8
18-6
19-4

Subtraction - Not Crossing 10

Reasoning and Problem Solving

Annie, Tommy and Alex are working out which calculation is represented below.

Can you work out who is correct? Explain why.

Possible response: Tommy is correct because first there were 17 cakes and now there are still 17 cakes so zero cakes were eaten.

How many ways can you complete this	$20-9=11$
number sentence?	$19-8=11$
Use the number line to help you.	$18-7=11$
	$17-6=11$
$16-5=11$ etc.	

Varied Fluency

Rose Maths

Subtraction - Crossing 10 (1)

Notes and Guidance

For the first time, children will be introduced to subtraction where they have to cross ten. This small step focuses on the strategy of partitioning to make ten.

Children should represent this using concrete manipulatives or pictorially to begin with. Ten frames and number lines are particularly useful to model the structure of this strategy.
Children will move towards using this as a mental strategy.

Mathematical Talk

How can you partition a number to help you subtract?
How does using the counters help you to see this strategy?
How does using a number line help you to see this strategy?
Can you think of another way to represent this problem?

First there were 13

Then 5 were eaten

Rosie has used the ten frames to calculate $12-5$

Use her method to complete:

Subtraction - Crossing 10 (1)

Reasoning and Problem Solving

Teddy has used
the = sign
incorrectly.
$10-1$ is not equal
to $15-5$
He should have written:
$15-5=10$
$10-1=9$
$17-5>12-5$
$14-4=18-8$
$11-7<11-4$

Is Whitney correct? Explain how you know.

Teddy works out 15-6 This is Teddy's working out:
$15-5=10-1=9$
Why is Teddy's working out wrong?

Use $<,>$ or $=$ to make the statements correct.

> I can do this without working out any answers.
$17-5$

$12-5$
$14-4$

$18-8$
$11-7$

$11-4$

If you partition 16 into 7 and 9, you can subtract 7

Partitioning the 7 into 6 and 1 is useful as Rosie can subtract the 6 to make 10 then subtract the 1
(Q)

4

Subtraction - Crossing 10 (2)

Notes and Guidance

Children subtract numbers, within 20, crossing the 10. Children begin to understand the different structures of subtraction (taking away, partitioning, difference).

They use concrete manipulatives and pictorial methods to support their understanding.

One of the most difficult concepts for children is finding the difference where they subtract to calculate how many more.

Mathematical Talk

How do the counters and bar models help you to subtract?
Which method would you use to show your thinking and why?
Did you count forwards or backwards? Why?

Varied Fluency

Complete the number sentences to describe what happens to the sweets.

First there were \qquad sweets.

Then \qquad sweets were eaten.
Now there are \qquad sweets.

\square There are 12 cars in the car park.

5 of them are blue. How many are red?

$$
\square-\square=\square
$$

__ of the cars are red.
Adam has 13 playing cards.
Oliver has 5 playing cards.
How manv more cards does Adam have?

$$
13
$$

Subtraction - Crossing 10 (2)

Reasoning and Problem Solving

Amir has 16 apples. Ron has none.
Amir gives Ron 9 apples.
Who has the most apples now?
Explain how you know.

Look at the following objects.

Teddy works out these calculations.

$$
\begin{aligned}
15-4 & = \\
15-11 & = \\
11-4 & =
\end{aligned}
$$

What question could he have asked each time?

Ron because he has 9 and Amir only has 7 left.
$16-9=7$
$15-4=11$
(Teddy has 15
bears. He eats 4.
How many are left?)
$15-11=4$ (11 are yellow how many are purple?) $11-4=7$ (How many more yellow bears are there?)

Related Facts

Notes and Guidance

Children explore addition and subtraction fact families for numbers within 20. They should work concretely and pictorially to find links between the addition and subtraction sentences.
They should recognize that addition and subtraction are inverse operations.
Children should begin to understand that addition is commutative but subtraction is not.

Mathematical Talk

What's the same and what's different?
If we know $12+1=13$, what else do we know?
Can you see any patterns?
If we know that $15-3=12$, why can't we say $3-15=12$?

Varied Fluency

Complete the addition sentences.

$12+1=13$
Can you write a subtraction sentence for each?
$13-1=12$

$$
\begin{aligned}
& 15-\overline{=}=3 \\
& 15-3= \\
& 3+\bar{y}=15 \\
& -3=15
\end{aligned}
$$

\square Complete:

13 - \qquad
\qquad

\qquad
_+ _ =

$11+\ldots=13$ - \qquad - _ = \qquad

Complete and write addition and subtraction sentences for each bar model.

17	
$?$	6

12	
4	$?$

Can you use the numbers 8,7 and 15 to make a bar model? Can you write addition and subtraction sentences for this bar model?

Related Facts

Reasoning and Problem Solving

Circle the addition and subtraction	$15+3=18$
number sentences that match the ten	$18-15=3$
frames.	$18-3=15$
	$18=3+15$

$15+3=18$	$15-3=18$
$3+18=15$	$18-15=3$
$18+3=15$	$18-3=15$
$18=3+15$	$15-18=3$

Circle the addition and subtraction number sentences that match the ten frames.

$$
\begin{array}{ll}
15+3=18 & 15-3=18 \\
3+18=15 & 18-15=3 \\
18+3=15 & 18-3=15 \\
18=3+15 & 15-18=3
\end{array}
$$

Compare Number Sentences

Notes and Guidance

Children compare number sentences within 20 using inequality symbols.

Children may still need to use concrete manipulatives or draw images to help them compare calculations. They should be encouraged to look at whether it is always necessary to have to work out the answers to calculations in order to compare them.

Mathematical Talk

What do each of the symbols mean?
Do you always have to work out the answers to be able to compare calculations? Why?

Why might Tommy put 8 into the example below?
e.g. $7+1=$ \qquad - 2

Varied Fluency

Which card completes the number sentence?

\square Use $<$, > or $=$ to compare the number sentences.

$$
\begin{aligned}
& 3+8 \bigcirc 8+3 \\
& 18-5 \bigcirc 18 \\
& 12+4 \bigcirc 12-4
\end{aligned}
$$

\square Choose the correct digit card to make the number sentences correct.

$9+\ldots>9+1$

Compare Number Sentences

Reasoning and Problem Solving

Any number less than 11 would make this correct. Alex $7+11<7+$ \qquad Do you agree with Alex? Explain why.	Alex is incorrect. She needs to use any number greater than 11
Whitney has 16 sweets and eats 7 of them. Mo has 17 sweets and eats 8 of them. Who has more sweets left? Explain how you know.	Mo and Whitney have the same. $16-7$ is equal to 17-8

Dexter is working out which symbol to use to compare the number sentences.	Dexter is incorrect because when you take 5 away from must be = because all of the numbers are the same.		
Do you agree with Dexter?		\quad	the answer will
:---			
be smaller than			
when you add 5 to			
14 so the correct			
symbol should be			
Explain why.			

