Power Maths Key Vocabulary Year 3 - Block C

	by saying "one cat-and-dog, two cat-and-dog, three cat-and-dog, ... " etc., or you may prefer "a-thousand-and one, a-thousand-and two, a-thousandand three, ... "	There are 24 hours in a day. How many hours are in 3 days? (72 hours) How many days is 120 hours? (5 days)
digital clock	A digital clock is a type of clock that displays the time digitally, i.e. in numerals or other symbols.	Henry is walking from his house to schoo - The walk is 18 minutes long. - He arrives at 8 minutes past 8 What time does he leave the house? Draw the time on the clock.
analogue clock	An analogue clock is a clock or watch that has moving hands and (usually) hours marked from 1 to 12 to show you the time.	$\left(\begin{array}{lll} 10 & & 2 \\ 9 & 0 & 3 \\ 8 & & \\ 7 & 6 & 5 \end{array}\right)$
	Some have Roman Numerals (I, II, III, etc) instead, or no numbers at all, instead only relying on the positioning of the hands and what angle they are at to indicate the time.	What time is it?
estimate	To find a value that is close enough to the right answer, usually without the need of a written calculation.	What numbers could be rounded to 230 ? $(225,226,227,228,229$, 231, 232, 233, 234)
		Estimate answers to the following questions: $47+35=$
		$35+23=$
		$11+$
		(90, 60,80$)$
angle	An angle is a measure of a turn, measured in degrees or ${ }^{\circ}$. There are 360° in a full turn. You can find out the size of an angle using a protractor.	Tick the images where you can see an angle. Explain your choices.

		The letter ' X ' has four angles.
acute	An acute angle is an angle that measures between 90° and 0°, meaning it is smaller than a right angle (an "L" shape) but has at least some space between the two lines that form it. A " V " shape is an example of an acute angle.	Write your name in capital letters. How many angles can you see in each letter? How many angles are there in your full name? Draw a line along the dots to make a right-angle with each of these lines:
obtuse	An obtuse angle has a measurement greater than 90 degrees but less than 180 degrees. Examples of obtuse angles are: 100°, $120^{\circ}, 140^{\circ}, 160^{\circ}, 170^{\circ}$ etc.	Label the acute angles (A) and obtuse angles (O) on the diagram below
right angle	A right angle is equal to 90°, one quarter of a full revolution.	
	We can find the right angles in shapes. A square or rectangle has four corners with right angles. All triangles with one angle right are called right-angled triangles.	Teddy describes a shape. What could Jack's shape look like? Describe a shape in terms of it's angles for a friend to draw.

	It comes from the word 'horizon', in the sense that horizontal lines are parallel to the horizon.	(Eva thinks the star has both lines of symmetry, but it only has a vertical line of symmetry)
A rhombus (plural rhombior or		
rhombuses) is a quadrilateral whose		
four sides all have the same length.		

	- All angles are right angles. - All of its faces are rectangles/squares.
cone	A cone is a distinctive threedimensional (3D) shape that has a flat surface and a curved surface, pointed towards the top. The pointed end of the cone is called the apex, whereas the flat surface is called the base.
cylinder	A cylinder is a three-dimensional (3D) solid that holds two parallel bases joined by a curved surface, at a fixed distance. These bases are normally circular in shape (like a circle) and the centre of the two bases are joined by a line segment, which is called the axis.
sphere	A three-dimensional (3D) object shaped like a ball. Every point on the surface is the same distance from the centre.
face edge vertex vertices	A face is a flat surface of a solid object. An edge is where two faces meet. For example a cube has 12 edges, a cylinder has two and a sphere has none. A vertex is a point where 2 or more lines/sides meet (a corner). The plural of vertex is vertices.

you see on a \qquad ? Can you spot objects around the classroom that are cubes/cuboids etc.? Can you guess the shape from the description given?

Mo has a 3-D shape, he says,

What could Mo's shape be?

Alex says,

Do you agree with Alex?
Explain why.

Sort a selection of 3-D shapes using the criteria in the table.

Change the headings of the table and resort your shapes.

I have 9 straws and 6 balls of Play-Doh.

What 3-D shape can I create using all of the straws and Play-Doh? Have a go at making it.

clockwise anticlockwise	Moving in the direction of hands on a clock is called clockwise. The opposite directions is anticlockwise.	Look at the hands of the clock. Turn the minute hand one quarter of a turn clockwise. Where is the large hand pointing? What is the new time? What turn has the minute hand made? Give children instructions to encourage them to make $1 / 2,1 / 4,3 / 4$ and whole turns in different directions from different starting points. Allow children the opportunity to give instructions too.
mass gram (g) kilogram (km)	Mass is a measure of the amount of matter in an object. Mass measures the quantity of matter regardless of both its location in the universe and the gravitational force applied to it. An object's mass is constant in all circumstances; contrast this with its weight, a force that depends on gravity. A gram is a unit of mass in the metric system defined as one thousandth of a kilogram. A kilogram is equal to $1,000 \mathrm{~g}$.	Who do you agree with? Explain why. The potatoes weigh 13 kg Amir We don't know how much the potatoes weigh because Jack the number is hidden. The potatoes weigh more than half of 10 kg
weight	An object's weight is how hard gravity is pulling on it. We think the weight is the same everywhere because we all live on the surface of the planet Earth!	Can you calculate the weight of the potatoes? Explain how you did it. (Amir is wrong - he has counted on 3 from 10 kg when he should have
scale	Here, we can see a scale on the measuring jug. Each small interval or division measures 100 ml . $\text { Scale : } 1 \text { division = } 100 \mathrm{~m}$	counted back 3 kg . Jack is wrong because we can work out the scale by using the 10 kg and counting back. They weigh 7 kg . Rosie is correct because half of 10 is 5 and the arrow is past where 5 kg would be. The weight of the potatoes is 7 kg.)

		The chocolate bar weighs 100 g . How much does one muffin weigh? How much does each side weigh? (The chocolate bar must weigh the same as two muffins so one muffin must weigh 50 g . Each side weighs 150 g .) Using only 3 objects and a weighing scale, try to get as close to 2 kg as possible. Explain why you chose those objects. Work out how much more or how much less is needed to make it 2 kg .
capacity litre (I) millilitre (ml)	Capacity is the amount something can hold. This is measure in litres (I) and millilitres (ml).	Use a variety of containers. Can you estimate how much liquid they hold? Check your estimates using measuring jugs and cylinders to see how accurate you were. Use the clues to work out who has which container. I have exactly half a litre Annie I have $1,000 \mathrm{ml}$ Amir (Annie has container B Ron has container A Eva has container C)

| | True or False?
 The tallest container has the largest
 capacity.
 Use containers to decide whether the
 statement is true or false.
 Record the capacity of the different
 containers in a table. |
| :--- | :--- | :--- |

