White
 Spring - Block 2
 Rose
 Maths Percentages

Overview

Small Steps

NC Objectives

Fractions to percentages
Equivalent FDP
Order FDP
Percentage of an amount (1)
Percentage of an amount (2)
Percentages - missing values

Solve problems involving the calculation of percentages [for example, of measures and such as 15% of 360] and the use of percentages for comparison.

Recall and use equivalences between simple fractions, decimals and percentages including in different contexts.

Fractions to Percentages

Notes and Guidance

It is important that children understand that 'percent' means 'out of 100'.
Children will be familiar with converting some common fractions from their work in Year 5 They learn to convert fractions to equivalent fractions where the denominator is 100 in order to find the percentage equivalent.

Mathematical Talk

What does the word 'percent' mean?
How can you convert tenths to hundredths?
Why is it easy to convert fiftieths to hundredths?
What other fractions are easy to convert to percentages?

Varied Fluency

White

Complete the table.

Fraction	Percentage
$\frac{1}{2}$	
$\frac{1}{4}$	
$\frac{1}{10}$	
$\frac{1}{5}$	

\square Fill in the missing numbers.

$$
\begin{array}{ll}
\frac{12}{100}=\square \% & \frac{\square}{100}=35 \% \\
\frac{12}{50}=\frac{\square}{100}=\square \% & \frac{44}{\square}=\frac{22}{100}=22 \%
\end{array}
$$

Fractions to Percentages

Reasoning and Problem Solving

In a Maths test, Tommy answered 62\% of the questions correctly.	Tommy answered more questions correctly because
Rosie answered $\frac{3}{5}$ of the questions correctly.	$\frac{3}{5}$ as a percentage is 60% and this is less than 62\%
Who answered more questions correctly?	

Dora is correct

because $\frac{18}{50}=\frac{36}{100}$

Amir thinks that 18% of the grid has been shaded.

Dora thinks that 36\% of the grid has been shaded.

Who do you agree with?
Explain your reasoning.

Equivalent FDP

Notes and Guidance

Children use their knowledge of common equivalent fractions and decimals to find the equivalent percentage.

A common misconception is that 0.1 is equivalent to 1%. Diagrams may be useful to support understanding the difference between tenths and hundredths and their equivalent percentages.

Mathematical Talk

How does converting a decimal to a fraction help us to convert it to a percentage?

How do you convert a percentage to a decimal?
Can you use a hundred square to represent your conversions?

Varied Fluency

Complete the table.

Decimal	Fraction	Percentage
0.35	$\frac{35}{100}$	35%
0.27		
0.6		
0.06		

Use $<,>$ or $=$ to complete the statements.

\square Which of these are equivalent to 60% ?
$\frac{60}{100} \frac{6}{100} 0.06 \frac{3}{5} \frac{3}{50} 0.6$

Equivalent FDP

Reasoning and Problem Solving

Amir says 0.3 is less than 12% because 3 is less than 12	Amir is wrong because 0.3 is equivalent to 30%
Explain why Amir is wrong.	A $=0.3,30 \%$ or $\frac{3}{10}$
Complete the part-whole model. How many different ways can you complete it?	B = 0.2, 20\%, $\frac{2}{10}$ or

How many different fractions can you make using the digit cards?

How many of the fractions can you convert into decimals and percentages?

Possible answers:
Children make a range of fractions.

They should be able to convert
$\frac{1}{2}, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}$
and $\frac{4}{5}$ into
decimals and percentages.

Order FDP

Notes and Guidance

Children convert between fractions, decimals and percentages to enable them to order and compare them.

Encourage them to convert each number to the same form so that they can be more easily ordered and compared. Once the children have compared the numbers, they will need to put them back into the original form to answer the question.

Mathematical Talk

What do you notice about the fractions, decimals or percentages? Can you compare any straight away?

What is the most efficient way to order them?
Do you prefer to convert your numbers to decimals, fractions or percentages? Why?

If you put them in ascending order, what will it look like? If you put them in descending order, what will it look like?

Varied Fluency

Use $<,>$ or $=$ to complete the statements:
$60 \% \bigcirc \frac{3}{2}$
\square Order from smallest to largest:
$50 \% \frac{2}{5} 0.45 \quad \frac{3}{10} 54 \% \quad 0.05$

Four friends share a pizza. Whitney eats 35% of the pizza, Teddy eats 0.4 of the pizza, Dora eats 12.5% of the pizza and Alex eats 0.125 of the pizza.

Write the amount each child eats as a fraction.
Who eats the most? Who eats the least? Is there any left?

Order FDP

Reasoning and Problem Solving

In his first Geography test, Mo scored	Mo improved his 38\% In the next test he scored $\frac{16}{40}$
$\frac{16}{40}$ is equivalent to Did Mo improve his score? 40% which is greater than his previous score of 38%	

Which month did Eva save the most
money?
Estimate your answer using your
knowledge of fractions, decimals and
percentages.
Explain why you have chosen that month.

In January, Eva saves $\frac{3}{5}$ of her $£ 20$ pocket money.

In February, she saves 0.4 of her $£ 10$ pocket money.

In March, she saves 45\% of her $£ 40$ pocket money.

She saved the most money in
March.
Estimates:
Over £10 in January because $\frac{3}{5}$ is more than half.
Under £10 in
February because
she only had £10
to start with and
0.4 is less than half.

Nearly £20 in
March because
45\% is close to a
half.

Percentage of an Amount (1)

Notes and Guidance

Children use known fractional equivalences to find percentages of amounts.
Bar models and other visual representations may be useful in supporting this e.g. $25 \%=\frac{1}{4}$ so we divide into 4 equal parts. In this step, we focus on $50 \%, 25 \%, 10 \%$ and 1% only.

Mathematical Talk

Why do we divide a quantity by 2 in order to find 50% ?
How do you calculate 10% of a number mentally?
What's the same and what's different about 10% of 300 and 10% of 30 ?

Varied Fluency

Eva says,

Complete the sentences.
25% is equivalent to $\frac{1}{\square}$ To find 25% of an amount, divide by \qquad
10% is equivalent to $\frac{1}{\square}$ To find 10% of an amount, divide by \qquad
1% is equivalent to $\frac{1}{\square}$ To find 1% of an amount, divide by \qquad
\square Use the bar models to help you complete the calculations.

50% of $406=$

\square Find:

50% of 300	25% of 300	10% of 300	1% of 300
50% of 30	25% of 30	10% of 30	1% of 30
50% of 60	25% of 60	10% of 60	1% of 60

Percentage of an Amount (1)

Reasoning and Problem Solving

Mo says,	
To find 10\% you divide by 10, so to find 50% you divide by 50 Do you agree? Explain why.	Mo is wrong because 50% is equivalent to a half so to find 50% you divide by 2
Eva says to find 1% of a number, you divide by 100 Whitney says to find 1% of a number, you divide by 10 and then by 10 again. Who do you agree with? Explain your answer.	They are both correct. Whitney has divided by 100 in two smaller steps.

Complete the missing numbers.	
50% of $40=\ldots \%$ of 80	25
10% of $40=1 \%$ of 400	10

Percentage of an Amount (2)

Notes and Guidance

Children build on the last step by finding multiples of 10% and other known percentages.
They explore different methods of finding certain percentages e.g. Finding 20% by dividing by 10 and multiplying by 2 or by dividing by 5 . They also explore finding 5% by finding half of 10%. Using these methods, children build up to find percentages such as 35%.

Mathematical Talk

Is dividing by 10 and multiplying by 5 the most efficient way to find 50\%? Explain why.

Is dividing by 10 and multiplying by 9 the most efficient way to find 90\%? Explain why.

How many ways can you think of to calculate 60% of a number?

Varied Fluency

Mo uses a bar model to find 30% of 220

10% of $220=22$, so 30% of $220=3 \times 22=66$
Use Mo's method to calculate:

$$
40 \% \text { of } 22020 \% \text { of } 110 \quad 30 \% \text { of } 440 \quad 90 \% \text { of } 460
$$

To find 5% of a number, divide by 10 and then divide by 2 Use this method to work out:
(a) 5% of 140
(b) 5% of 260
(c) 5% of 1 m 80 cm

How else could we work out 5\%?
Calculate:
15% of $60 \mathrm{~m} \quad 35 \%$ of $300 \mathrm{~g} \quad 65 \%$ of $£ 20$

Percentage of an Amount (2)

Reasoning and Problem Solving

How many ways can you find 45% of $60 ?$	Possible methods include:
Use similar strategies to find 60% of 45	$10 \% \times 4+5 \%$
What do you notice?	$25 \%+20 \%$
Does this always happen? Can you find more examples? $25 \%+10 \%+10 \%$ $50 \%-5 \%$ To find 60\% of 45 $10 \% \times 6$ $50 \%+10 \%$ $10 \% \times 3$ Children will notice that 45% of $60=60 \%$ of 45 This always happens. 	

Percentages - Missing Values

Notes and Guidance

Children use their understanding of percentages to find the missing whole or a missing percentage when the other values are given. They may find it useful to draw a bar model to help them see the relationship between the given percentage or amount and the whole.
It is important that children see that there may be more than one way to solve a problem and that some methods are more efficient than others.

Mathematical Talk

If we know a percentage, can we work out the whole?
If we know the whole and the amount, can we find what percentage has been calculated?

What diagrams could help you visualise this problem? Is there more than one way to solve the problem?

What is the most efficient way to find a missing value?

Varied Fluency

350,000 people visited the Natural History Museum last week. 15% of the people visited on Monday.
40% of the people visited on Saturday.
How many people visited the Natural History Museum during the rest of the week?
\square If 7 is 10% of a number, what is the number?
Use the bar model to help you.

Complete:

Can you see a link between the questions?

Percentages - Missing Values

Reasoning and Problem Solving

A golf club has 200 members. 116 male
58% of the members are male.
50% of the female members are children.
(a) How many male members are in the golf club?
(b) How many female children are in the golf club?
members
42 female children

