White
 Autumn - Block 1
 R@se
 Maths Place Value

Overview

Small Steps

NC Objectives

Read and write numbers to at least 100 in numerals and in words.

Recognise the place value of each digit in a two digit number (tens, ones).

Identify, represent and estimate

Tens andones using additon
Use a place value chart
Compare objects
Compare numbers
Order objects and numbers
Count in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 sCount in 3 s
Count objects to 100 and read and write numbers in numerals and words
Represent numbers to 100Tens and ones with a part-whole model
Tens and ones using addition

-
- -

Count Objects to 100

Notes and Guidance

To build on skills learned in Year 1, children need to be able to count objects to 100 in words and represent these numbers in numerals.

Problems should be presented in a variety of ways e.g. numerals, words and images. Variation should challenge children by providing them with missing numbers which are non-consecutive.

Mathematical Talk

How can you count the cars?
Do you have a strategy?
What is one more/one less?
There are \qquad cars in the car park.

What numbers are represented below?
Write your answer in numerals and words.

\square Match the numerals to the words.

Count Objects to 100

Reasoning and Problem Solving

How many cookies are there altogether?
Write your answer in numerals and words.

What strategy did you use?
Did your partner use a different method?
What is the best strategy to use?

There are 48
(forty-eight)
cookies altogether.
Children may
count in 10s and
1s or know that
there are 4 tens
which are equal to
40 and then count on 8 more.

Represent Numbers to 100

Notes and Guidance

Varied Fluency

Children need to be able to represent numbers to 100 using a range of concrete materials, such as bead strings, straws, Base 10 equipment etc.

Children should also be able to state how a number is made up. For example, they can express 42 as 4 tens and 2 ones or as 42 ones.

Mathematical Talk

How have the beads been grouped? How does this help you count?

Can you show me the tens/ones in the number?
Which resource do you prefer to use for larger numbers? Which is quickest? Which would take a long time?

Here is part of a bead string.

-00000000000000000-

Complete the sentences.
There are \qquad tens and \qquad ones.
The number is \qquad .
Represent 45 on a bead string and complete the same sentence stems.

Match the number to the correct representation.

One ten and five ones

Thirty-five
$-000000000000000-$

Represent 67 in three different ways.

Represent Numbers to 100

Reasoning and Problem Solving

How many two digit numbers can you
$70,20,72,27$ make using the digit cards?

What is the largest number?
Prove it by using concrete resources.
What is the smallest number?
Prove it by using concrete resources.
Why can't the 0 be used as a tens number?

The largest
number is 72

The smallest number is 20

Because it would make a 1 digit number.

Tens and Ones (1)

Notes and Guidance

Children should have an understanding of what each digit represents when partitioning a number.

It is important that children can partition numbers in a variety of ways, not just as tens and ones. For example, 58 is made up of 5 tens and 8 ones or 4 tens and 18 ones, or 2 tens and 38 ones, etc.

Mathematical Talk

Which part do we know? How can we use the whole and part to work out the missing part?

Can you use concrete resources/draw something to help you partition?

How can you rearrange the counters to help you count the lemon and strawberry cupcakes?

Varied Fluency

\square Complete the part-whole models.

Complete the part-whole models.

The ten frames represent lemon and strawberry cupcakes. Draw a part-whole model to show how many cupcakes there are altogether.

Tens and Ones (1)
Reasoning and Problem Solving

Tens and Ones (2)

Notes and Guidance

Children continue to use a part-whole model to explore how tens and ones can be partitioned and recombined to make a total.
Children will see numbers partitioned in different ways. For example, 39 written as $20+19$
This small step will focus on using the addition symbol to express numbers to 100 . For example, 73 can be written as $70+3=73$

Mathematical Talk

What clues are there in the calculations? Can we look at the tens number or the ones number to help us?

What number completes the part-whole model?
What is the same/different about the calculations?
What are the key bits of information? Can you draw a diagram to help you?

Varied Fluency

Match the number sentence to the correct number.

4041431

Complete the part-whole model and write four number sentences to match.

\qquad
\qquad = \qquad
$+$ \qquad
\qquad $=+$ \qquad $=$ \qquad

Dora has 20 sweets and Amir has 15 sweets.
Represent the total number of sweets:

- With concrete resources.
- In a part-whole model.
- As a number sentence.

Tens and Ones (2)

Reasoning and Problem Solving

Teddy thinks that,	$40+2=42$ Teddy has just combined the numbers to make 402 without thinking about their place value.
Explain the mistake he has made. Can you show the correct answer using concrete resources?	

Fill in the missing numbers. $1 \text { ten }+3 \text { ones }=13$ 2 tens + \qquad ones $=23$	```1 ten + 3 ones= 13 2 tens + 3 ones = 23 3 tens + 3 ones = 33 4 tens + 3 ones =```
3 tens +3 ones $=$ \qquad \qquad tens +3 ones $=43$	
What would the next number in the pattern be?	$\begin{aligned} & 5 \text { tens }+3 \text { ones }= \\ & 53 \end{aligned}$

Place Value Charts

Notes and Guidance

Children should formally present their work in the correct place value columns to aid understanding of place value.

It is important for children to use concrete, pictorial and abstract representations in their place value chart.

Mathematical Talk

How many tens are there?
How many ones are there?
What is different about using Base 10 to using place value counters?

Can you write any other number sentences about the place value chart?

Varied Fluency

What number is represented in the place value chart?

Tens	Ones
7	$\begin{aligned} & \text { BEBE } \\ & \text { EREE } \end{aligned}$

Complete the place value chart using Base 10 and place value counters to represent the number 56

What number is represented in the place value chart?

Tens	Ones
\square	

Write two different number sentences for this number.
\qquad $+$ \qquad $=$ \qquad
\qquad $=$ \qquad
\qquad

Place Value Charts

Reasoning and Problem Solving

How many two digit numbers can you
make that have the same number of
tens and ones?
Show each one on a place value chart.

Tens	Ones

> There are nine possibilities: $11,22,33,44,55$, $66,77,88,99$

Do both place value charts show the same value?

Tens	Ones
?	-

Yes, they both
have the same
value of 41
$40+1=41$
$30+11=41$
Same: Both A and
B show 41
Different: There are a different number of tens and ones in each place value chart.

What is the same?
What is different?

Compare Objects

Notes and Guidance

Varied Fluency

Comparing objects is introduced once children have a secure understanding of numbers in a place value chart.

Children are expected to compare a variety of objects using the vocabulary 'more than', 'less than' and 'equal to' and the symbols <, >, =

Mathematical Talk

How can you arrange the objects to make them easy to compare?

Do groups of ten help you count? Why?
Do groups of ten help you compare? Why?
\square Use cubes to show that:

- Eleven is less than fifteen
- 19 is greater than 9
- 2 tens is equal to 20

A packet of sweets contain 10 sweets.

Who has the most sweets?

Use $<,>$ or $=$ to complete.

Compare Objects

Reasoning and Problem Solving

Rosie and Amir are comparing numbers they have made. Rosie's number	Rosie is incorrect because Amir has 4 tens which makes 40 and Rosie has 3
tens and 6 ones	
which makes 36,	
therefore Amir has	
more.	

Add more Base 10 to make the number shapes and the Base 10 equal.

How much did you add in total to make them equal?

What is the smallest amount you could add if the symbol changed to <?

Children should add 3 tens and 4 ones to make 54 on both sides.

If the symbol changed to < the smallest amount they could add is 3 tens and 5 ones.

Compare Numbers

Notes and Guidance

Children compare numbers using the language greater than, less than, more than, fewer, most, least and equal to.

They are able to use the symbols <,> and = to write number sentences.

Children should have access to concrete resources to help them justify their answers.

Mathematical Talk

Can you prove your answers using concrete resources?
Can you prove your answers by drawing a diagram?
Is there more than one answer?
Do you need to work the number sentences out to decide which is greater?

Varied Fluency

Complete the statements using more than, less than or equal to.
\qquad
81 is \qquad $60+4$
$30+8$ is \qquad thirty-eight

Complete the number sentences.
4 tens and 9 ones > \qquad
$\longrightarrow<70+5$
\qquad $=$ eight tens

Put $<,>$ or $=$ in each circle to make the statements correct.
$28 \bigcirc 30$
$90 \bigcirc 70+28$
$30+23 \bigcirc 40+13$
$20+14 \bigcirc 24$
$90 \bigcirc 70+28$
$30+23 \bigcirc 40+13$
$20+14$
24

Compare Numbers

Reasoning and Problem Solving

How many different numbers can go in the box?	There are six different numbers: $14,15,16,17,18,19$
True or False?	
One ten and twelve ones is bigger than	
2 tens.	True One ten and twelve ones $=22$ Explain how you know.

Disagree, for
example 19 is
smaller than 21
Do you agree?
Give some examples to support your
answer.
When comparing
with the highest
always the bigger
number.

Order Objects and Numbers

Notes and Guidance

Varied Fluency

Children order numbers and objects from smallest to greatest or greatest to smallest.
They should be encouraged to use concrete or pictorial representations to prove or check their answers.
Children use the vocabulary 'smallest' and 'greatest' and may also use the < or > symbols to show the order of their numbers.

Mathematical Talk

How does the number line help you order the numbers?
How does Base 10 prove that your order is correct?
How did you know which of the diagrams represented the smallest/greatest number?

Did you look at the tens or ones?

Circle the numbers 48,43 and 50 on the number line.

Put the numbers 48,43 and 50 in order starting with the smallest.
\square Use Base 10 to make the numbers sixty, sixteen and twenty-six. Write the numbers in order starting with the greatest number.

The diagrams represent different numbers.

Circle the greatest number.
Circle the smallest number.
Complete the number sentence \qquad $>$ \qquad

Order Objects and Numbers

Reasoning and Problem Solving

Order the numbers below.
Which would be the fourth number?

Explain how you ordered them.

If I ordered them from smallest to largest:
$29,33,34,37,43$, 53 then 37 would be the fourth number.

Alternatively, if I order the numbers from largest to smallest:
$53,43,37,34,33$, 29 then 34 would be the fourth number.

Mo has written a list of 2-digit numbers.
$14,23,32,41$

Can you find all the numbers Mo could have written?

Write the numbers in order from smallest to largest.

What strategy did you use?

Count in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s

Notes and Guidance

Varied Fluency

Children count forwards and backwards in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s . It is important that children do not always start from zero, however they should start on a multiple of 2 or 5 when counting in 2 s and 5 s but can start from any number when counting in 10s. For example when counting in 2 s they should not start at 3 .
Encourage children to look for patterns as they count.

Mathematical Talk

What do you notice? Are the numbers getting larger or smaller?
Are the numbers getting bigger or smaller each time? By how many?

Can you spot a pattern?

\square Circle the odd one out in each number sequence.

- 2, 4, 6, 8, 9, 10, 12......
- 0,5,10,20,30, 40......
- $35,30,25,20,12,10 \ldots .$.

Why is it the odd one out? Can you correct the mistake?
Count forwards and backwards in jumps of 10 from fifty-seven.

Count in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s

Reasoning and Problem Solving

Eva says,	Agree. Each number in the 5 times table does end in a 5 or 0 $5,10,15,20,25,30, ~$ $35,40,45,50$ etc. If you count in 5s from any number imes the five till end in 5 or 0
Drove it.	

Always, Sometimes, Never

- When counting in 2 s from zero the numbers are even.
- When counting in 5 s from zero the numbers are even.
- When counting in 10 s from zero the numbers are even.

Teddy and Whitney are both counting from zero to twenty.

- Teddy is counting in 2 s .
- Whitney is counting in 5 s .

Will they say any of the same numbers?
What do you notice about your answer?

- Always
- Sometimes
- Always

Yes they will both
say 10 and 20
The numbers that are the same are the tens.

Count in 3s

Notes and Guidance

Varied Fluency

Children count forwards and backwards in 3s from any multiple of 3

Encourage children to look for patterns as they count and use resources such as a number track, a counting stick and concrete representations.

Mathematical Talk

What do you notice about the numbers?
Are the numbers in the sequence getting larger or smaller?
Can you spot a pattern?
What are you counting up in?
What do you notice about the numbers that are circled?
Continue the pattern.
(0) 12 2 3 4 5 5 (6) $7 \quad 8$ (9) 101112131415161718

Complete the number sequences.

Amir has 15 stickers. He collects 3 more each day.
Complete the number track to show how many he will have in six days.

Count in 3s

Reasoning and Problem Solving

Teddy is counting in 2 s and Jack is counting in 3 s .

Teddy	2	4	6	8
Jack	3	6	9	12
+				

Teddy says,

> If we add our numbers together as we count we can make a new number pattern.

What pattern do they make?
What happens if both Teddy and Jack count in 5 s and they add them together to make a new pattern?

If Teddy and Jack add their numbers together they will be counting in 5 s .

If Teddy and Jack both count in 5 s their new pattern would be counting in 10s.

