White
 Spring - Block 1
 R@se
 Maths Decimals

Overview

Small Steps

NC Objectives

Identify the value of each digit in numbers given to 3 decimal places and multiply numbers by 10, 100 and 1,000 giving answers up to 3 decimal places.

Multiply 1-digit numbers with up to 2 decimal places by whole numbers.

Use written division methods in cases where the answer has up to 2 decimal places.

Solve problems which require answers to be rounded to specified degrees of accuracy

Three Decimal Places

Notes and Guidance

Children recap their understanding of numbers with up to 3 decimal places. They look at the value of each place value column and describe its value in words and digits.

Children use concrete resources to investigate exchanging between columns e.g. 3 tenths is the same as 30 hundredths.

Mathematical Talk

How many tenths are there in the number? How many hundredths? How many thousandths?

Can you make the number on the place value chart?
How many hundredths are the same as 5 tenths?
What is the value of the zero in this number?

Varied Fluency

Complete the sentences.

There are \qquad ones, \qquad tenths, \qquad hundredths and \qquad thousandths.
The number in digits is \qquad
Use counters and a place value chart to represent these numbers.

\square Write down the value of the 3 in the following numbers.
0.53
362.44
739.8
0.013
3,420.98

Three Decimal Places

Reasoning and Problem Solving

Tommy says,	Possible answer: The more decimal places a number has, the smaller the number is.	I do not agree with this as the number 4.39 is smaller than the number 4.465, which has more decimal
places.		

Four children are thinking of four different numbers.

Teddy: "My number has four hundredths."
Alex: "My number has the same amount of ones, tenths and hundredths."

Dora: "My number has less ones that tenths and hundredths."

Jack: "My number has 2 decimal places."
Match each number to the correct child.

Teddy: 4.345
Alex: 4.445
Dora: 3.454
Jack: 3.54
White

Do you agree?
Explain why.
Alex says that 3.24 can be written as 2 ones, 13 tenths and 4 hundredths.

Do you agree?
How can you partition 3.24 starting with 2 ones?
How can you partition 3.24 starting with 1 one?

Think about exchanging between columns.

Multiply by 10, 100 and 1,000

Notes and Guidance

Children multiply numbers with up to three decimal places by 10,100 and 1,000
They discover that digits move to the left when they are multiplying and use zero as a place value holder. The decimal point does not move.
Once children are confident in multiplying by 10, 100 and 1,000 , they use these skills to investigate multiplying by multiples of these numbers e.g. 2.4×20

Mathematical Talk

What number is represented on the place value chart?
Why is 0 important when multiplying by 10,100 and 1,000 ?
What patterns do you notice?
What is the same and what is different when multiplying by 10 , $100,1,000$ on the place value chart compared with the Gattegno chart?

Varied Fluency

Identify the number represented on the place value chart.

Thousands	Hundreds	Tens	Ones	Tenths	Hundredths
			\bigcirc		

Multiply it by 10, 100 and 1,000 and complete the sentence stem for each.
When multiplied by \qquad the counters move \qquad places to the
\qquad -.

Use a place value chart to multiply the following decimals by 10, 100 and 1,000

$$
6.4][6.04] 6.004
$$

Fill in the missing numbers in these calculations

$\square \times 100=208$

Multiply by 10, 100 and 1,000

Reasoning and Problem Solving

Using the digit cards 0-9 create a
number with up to 3 decimal places e.g.
3.451
Cover the number using counters on your
Gattegno chart.

10,000	20,000	30,000	40,000	50,000	60,000	70,000	80,000	90,000
1,000	2,000	3,000	4,000	5,000	6,000	7,000	8,000	9,000
100	200	300	400	500	600	700	800	900
10	20	30	40	50	60	70	80	90
1	2	3	4	5	6	7	8	9
0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.001	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.009

Explore what happens when you multiply your number by 10 , then 100 , then 1,000

What patterns do you notice?

Children will be able to see how the counter will move up a row for multiplying by 10 , two rows for 100 and three rows for 1,000 . They can see that this happens to each digit regardless of the value.
For example,
3.451×10
becomes 34.51
Each counter moves up a row but stays in the same column.

Dora says,	Children should When you multiply by 100, you should add two zeros.
explain that when	
you multiply by	
100 the digits	
move two places	
to the left.	

Divide by 10, 100 and 1,000

Notes and Guidance

Once children understand how to multiply decimals by 10, 100 and 1,000 , they can apply this knowledge to division, which leads to converting between units of measure.

It is important that children continue to understand the importance of 0 as a place holder. Children also need to be aware that 2.4 and 2.40 are the same. Similarly, 12 and 12.0 are equivalent.

Mathematical Talk

What happens to the counters/digits when you divide by 10 , 100 or 1,000 ?

Why is zero important when dividing by 10,100 and 1,000 ?
What is happening to the value of the digit each time it moves one column to the right?

What are the relationships between tenths, hundredths and thousandths?

Varied Fluency

Use the place value chart to divide the following numbers by 10,100 and 1,000

Tick the correct answers.
Can you explain the mistakes with the incorrect answers?

Complete the table.

	$\div 10$	$\div 100$	$\div 1,000$
30			
3 kg			
	0.9		
			9.0
		9.09	

Divide by 10, 100 and 1,000

Reasoning and Problem Solving

Using the following rules, how many ways can you make 70 ?

- Use a number from column A
- Use an operation from column B.
- Use number from column C.

A	B		C
0.7	\times	\div	0.1
7			1
70			10
700			100
7,000			1,000

Can you find a path from 6 to 0.06 ?
You cannot make diagonal moves.

6	$\times 10$	$\times 10$	$\div 100$
$\div 10$	$\times 100$	$\times 100$	$\div 10$
$\times 10$	$\div 10$	$\div 1,000$	$\div 100$
$\div 1,000$	$\times 1,000$	$\times 100$	0.06

Is there more than one way?

Multiply Decimals by Integers

Notes and Guidance

Children use concrete resources to multiply decimals and explore what happens when you exchange with decimals.

Children use their skills in context and make links to money and measures.

Mathematical Talk

Which is bigger, $0.1,0.01$ or 0.001 ? Why?
How many 0.1s do you need to exchange for a whole one?
Can you draw a bar model to represent the problem?
Can you think of another way to multiply by 5 ? (e.g. multiply by 10 and divide by 2).

Varied Fluency

Use the place value counters to multiply 1.212 by 3
Complete the calculation alongside the concrete representation.

Tens	Ones	Tenths	Hundredths	Thousandths

\square A jar of sweets weighs 1.213 kg .
How much would 4 jars weigh?

Rosie is saving her pocket money. Her mum says,

> "Whatever you save, I will give you five times the amount."

If Rosie saves $£ 2.23$, how much will her mum give her? If Rosie saves $£ 7.76$, how much will her mum give her? How much will she have altogether?

Multiply Decimals by Integers

Reasoning and Problem Solving

Children continue to use concrete resources to divide decimals and explore what happens when exchanges take place.

Children build on their prior knowledge of sharing and grouping when dividing and apply this skill in context.

Divide Decimals by Integers

Notes and Guidance

Mathematical Talk

Are we grouping or sharing?
How else could we partition the number 3.69? (For example, 2 ones, 16 tenths and 9 hundredths.)

How could we check that our answer is correct?

Varied Fluency

Divide 3.69 by 3
Use the diagrams to show the difference between grouping and by sharing?

Use these methods to complete the sentences. 3 ones divided by 3 is \qquad ones.
6 tenths divided by 3 is \qquad tenths.
9 hundredths divided by 3 is \qquad hundredths.
Therefore, 3.69 divided by 3 is \qquad —
\square Decide whether you will use grouping or sharing and use the place value chart and counters to solve:

$$
7.55 \div 5
$$

$$
8.16 \div 3
$$

$$
3.3 \div 6
$$

\square
Amir solves $6.39 \div 3$ using a part whole method.

Use this method to solve
25
$8.48 \div 2$
$6.9 \div 3$
$6.12 \div 3$

Divide Decimals by Integers

Reasoning and Problem Solving

When using the counters to answer 3.27 divided by 3 , this is what Tommy did:

Tommy says,

Do you agree with what Tommy has done? Explain why.

Possible answer:
Tommy is incorrect because he cannot move a hundredth to the tenths.
He should have exchanged the 2 tenths for
hundredths to get an answer of 1.09

$$
\begin{aligned}
& C \text { is } \frac{1}{4} \text { of } A \\
& B=C+2
\end{aligned}
$$

Use the clues to complete the division.

Children may try A as 8 and C as 2
but will realise that this cannot complete the whole division.

Therefore A is $4, B$ is 3 and C is 1

Division to Solve Problems

Notes and Guidance

Children will apply their understanding of division to solve problems in cases where the answer has up to 2 decimal places.

Children will continue to show division using place value counters and exchanging where needed.

Mathematical Talk

How can we represent this problem using a bar model?
How will we calculate what this item costs?
How will we use division to solve this?
How will we label our bar model to represent this?

Varied Fluency

Mrs Forbes has saved $£ 4,960$
She shares the money between her 15 grandchildren.
How much do they each receive?
Modelling clay is sold in two different shops.
Shop A sells four pots of clay for $£ 7.68$
Shop B sells three pots of clay for $£ 5.79$
Which shop has the better deal?
Explain your answer.
\square A box of chocolates costs 4 times as much as a chocolate bar.
Together they cost $£ 7.55$

How much does each item cost?
How much more does the box of chocolates cost?

Division to Solve Problems

Reasoning and Problem Solving

Each division sentence can be completed using the digits below.	$\begin{aligned} & 1.3 \div 5=0.26 \\ & 12.6 \div 3=4.2 \\ & 4.28 \div 4=1.07 \end{aligned}$
12 \square $\div \square=4.2$ 4. \square $8 \div \square=1.07$	

Jack and Rosie are both calculating the answer to $147 \div 4$	They are both correct.
Jack says,	
Rosie has divided	
her remainder of 3	
remainder 3	

Decimals as Fractions

Notes and Guidance

Children explore the relationship between decimals and fractions. They start with a decimal and use their place value knowledge to help them convert it into a fraction.
Children will use their previous knowledge of exchanging between columns, for example, 3 tenths is the same as 30 hundredths.
Once children convert from a decimal to a fraction, they simplify the fraction to help to show patterns.

Mathematical Talk

How would you record your answer as a decimal and a fraction? Can you simplify your answer?

How would you convert the tenths to hundredths?
What do you notice about the numbers that can be simplified in the table?

Can you have a unit fraction that is larger than 0.5 ? Why?

Varied Fluency

What decimal is shaded?
Can you write this as a fraction?

0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1

Complete the table.

Decimal	Fraction in tenths or hundredths	Simplified fraction
0.6	$\frac{6}{10}$	$\frac{3}{5}$
0.95		

\square Three friends share a pizza. Sam ate 0.25 of the pizza, Mark ate 0.3 of the pizza and Jill ate 0.35 of the pizza.

- Can you write the amount each child ate as a fraction?
- What fraction of the pizza is left?

Decimals as Fractions

Reasoning and Problem Solving

Odd one out.

Which is the odd one out and why?

Fractions to Decimals (1)

Notes and Guidance

At this point children should know common fractions, such as thirds, quarters, fifths and eighths, as decimals.

Children explore how finding an equivalent fraction where the denominator is 10,100 or 1,000 makes it easier to convert from a fraction to a decimal.

They investigate efficient methods to convert fractions to decimals.

Mathematical Talk

How many hundredths are equivalent to one tenth?
How could you convert a fraction to a decimal?
Which is the most efficient method? Why?
Which equivalent fraction would be useful?

Varied Fluency

Match the fractions to the equivalent decimals.

Use your knowledge of known fractions to convert the fractions to decimals. Show your method for each one.

$$
\frac{7}{20} \frac{3}{4} \frac{2}{5} \frac{6}{200}
$$

\square Mo says that $\frac{63}{100}$ is less than 0.65
Do you agree with Mo?
Explain your answer.

Fractions to Decimals (1)

Reasoning and Problem Solving

Dora and Whitney are converting $\frac{30}{500} \quad$ Possible response: into a decimal.

- Dora doubles the numerator and denominator, then divides by 10
- Whitney divides both the numerator and the denominator by 5
- Both get the answer $\frac{6}{100}=0.06$

Which method would you use to work out each of the following?

$$
\frac{25}{500} \frac{125}{500} \frac{40}{500} \frac{350}{500}
$$

Explain why you have used a certain method.
$\frac{25}{500}$ - divide by 5 ,
known division
fact.
$\frac{125}{500}$ - double,
easier than
dividing 125 by 5
$\frac{40}{500}$ - divide by 5 ,
known division
fact.
$\frac{350}{500}$ - double,
easier than
dividing 350 by 5

Fractions to Decimals (2)

Notes and Guidance

It is important that children recognise that $\frac{3}{4}$ is the same as $3 \div 4$. They can use this understanding to find fractions as decimals by then dividing the numerator by the denominator.

In the example provided, we cannot make any equal groups of 5 in the ones column so we have exchanged the 2 ones for 20 tenths. Then we can divide 20 into groups of 5

Mathematical Talk

Do we divide the numerator by the denominator or divide the denominator by the numerator? Explain why.

When do we need to exchange?
Are we grouping or are we sharing? Explain why.
Why is it useful to write 2 as 2.0 when dividing by 5 ?
Why is it not useful to write 5 as 5.0 when dividing by 8 ?

Varied Fluency

\square Deena has used place value counters to write $\frac{2}{5}$ as a decimal. She has divided the numerator by the denominator.

Use this method to convert the fractions to decimals. Give your answers to 2 decimal places.

Use the short division method to convert the fractions to decimals. Write the decimals to three decimal places.

$$
\frac{5}{8}
$$

\} 8 friends share 7 pizzas.
How much pizza does each person get?
Give your answer as a decimal and as a fraction.

Fractions to Decimals (2)

Reasoning and Problem Solving

Mo shares 6 bananas between some friends.

Each friend gets 0.75 of a banana.
How many friends does he share the bananas with?
Show your method.

Mo shares his 6 bananas between 8 friends because 6 divided by 8 equals 0.75

Children may show different methods:

Method 1: Children add 0.75 until they reach 6 . This may involve spotting that 4 lots of 0.75 equals 3 and then they double this to find 8 lots of 0.75 equals 6

Method 2: Children use their knowledge that
0.75 is equivalent to $\frac{3}{4}$ to find the equivalent fraction of $\frac{6}{8}$

