White
 Spring - Block 5
 Length \& Height

Overview

Small Steps

NC Objectives

Choose and use appropriate standard units to estimate and measure length/height in any direction (m/cm); mass (kg/g); temperature $\left({ }^{\circ} \mathrm{C}\right)$; capacity (litres/ml) to the nearest appropriate unit, using rulers, scales, thermometers and measuring vessels.

Compare and order lengths, mass, volume/capacity and record the results using >, < and =.

Measure Length (cm)

Notes and Guidance

Children measure to the nearest centimetre using a ruler or tape measure.

They measure both length and height and focus on the importance of measuring from O rather than the end of the ruler or tape measure.

Mathematical Talk

What is the length?
How can the numbers on the ruler help us?
How do you know you have drawn a line that is 5 cm long? How can you check?

Why is it important to start measuring from 0 on the ruler?

Varied Fluency

\square Choose a variety of objects and practice measuring them using a centimetre ruler.
Remember to line up the object to the 0 mark on the ruler.
e.g. How long is the pencil to the nearest centimetre?

How tall is the glass?
What other objects can you find to measure the height of?

Draw a line that is:

- 5 cm long
- 8 cm long
- Longer than 4 cm but shorter than 7 cm .

Measure Length (cm)

Reasoning and Problem Solving

How long is this piece of string? How could you find out?	The length will not change if you change the orientation so it will be easier to measure if you put it in a straight line.
Does the length change if you change the orientation?	

Mo says the car is 8 centimetres long. Do you agree?
Explain your answer.

Measure Length (m)

Notes and Guidance

Children begin to measure larger objects using metres. They think about whether it is better to measure items in centimetres or metres and discuss the reasons why.

Children do not yet convert from metres to centimetres; however they may see that 100 centimetres is the same as 1 metre and measurements can be written as mixed units e.g. the child is 1 metre and 25 centimetres tall.

Mathematical Talk

When would it be appropriate to use metres?
Why is more efficient to use metres instead of centimetres for longer objects/distances?

What equipment would you use to measure longer objects/distances?

Varied Fluency

Use a metre stick to measure objects in your classroom and place them into the groups.

Can you find anything that is exactly one metre?
Use a metre stick to count up in 10 cm blocks. What do you notice about 100 cm ?
Possible responses: it is the same a metre, 1 m is written, it is the end of the stick.

Measure the length of the school hall.
Record the length in metres and centimetres, e.g. 15 metres and 13 centimetres.

Measure Length (m)

Reasoning and Problem Solving

Usain Bolt can run 100 m in 9.58 seconds (just under 10 seconds).

How far do you think you can run in 10 seconds? Do you think it will be more or less than 100 m ?

Measure how far you and your friends can run in 10 seconds.
Record your answers in metres and centimetres.

Circle the objects that you would measure in metres. Tick the objects that you would measure in centimetres.

Children will have a variety of answers.
They could measure using different equipment including metre sticks and trundle wheels.

Circle elephant, school and tree

Amir has a metre stick.

He wants to measure the length of his classroom.

I can't measure the length of the classroom because my metre stick isn't long enough.

Explain to Amir how he could measure the length of his classroom.

Amir can measure the length of the classroom by putting a marker at the end of the metre stick and
then starting again at that point, moving his metre stick as he measures.

Compare Lengths

Notes and Guidance

Varied Fluency

Children compare lengths of objects using comparison language and symbols. They use language such as longer than, shorter than, taller than, longest, shortest and tallest.

Children only compare using the same unit of length in a question. However, the same number but different unit of measure could also be used to check that children understand metres are bigger than centimetres.

Mathematical Talk

Which is longer: 10 centimetres or 10 metres?
Which symbols can we use to compare lengths?
What is the difference between using taller than and longer than? When would we use taller than instead of longer than?

Compare the lengths using longer than, shorter than, or the same as.

\square Use $<,>$ or $=$ to complete the statements.

\square Choose 2 objects from your classroom. Estimate the length of each object. Then measure both objects and compare the lengths using <, > or =
Try this again, but this time measuring your friends' heights.

Compare Lengths

Reasoning and Problem Solving

A green pencil is twice as long as a blue pencil.	3 green pencils are longer than two blue pencils. 2 green pencils are shorter than 5 blue pencils. 4 green pencils are equal to 8 blue longer than, shorter than or equal to. pencils.
3 green pencils are__ 2 blue pencils	
2 green pencils are__ 5 blue pencils	green pencils are pencils

Order Lengths

Notes and Guidance

Varied Fluency

Children order more than two lengths from shortest to longest and vice versa. This will help them recap their understanding of ordering numbers to 100

Children will order given lengths as well as ordering objects by measuring each length themselves.

They will use the language of shorter, shortest, longer and longest to describe the order.

Mathematical Talk

How is ordering lengths similar to ordering numbers on a number line? Can we use a number line to help us?

Can we estimate which object is the longest before measuring?

Eva, Jack and Rosie are comparing the length of ribbons. Complete the sentences.

has the longest ribbon.
\qquad has the shortest ribbon.
\qquad 's ribbon is shorter than \qquad 's.
\qquad 's ribbon is longer than \qquad 's.
\square Choose five objects in your classroom.
Measure them using a ruler.
Order the objects from longest to shortest.
Write at least three sentences to describe the objects using the words longer, longest, shorter and shortest.

Order Lengths

Reasoning and Problem Solving

Four children are measuring their heights.	Shortest: Rosie Eva Mo
Eva is taller than Rosie, but not as tall as Mo.	Tallest: Dexter
Dexter is taller than Mo. Write down their names in order of their heights, starting with the shortest.	

Dora says,
The taller you are, the longer your shoes are. Children will find different results depending on their class. Measure the height of people in your class and measure the length of their shoes. Is Dora correct?

Four Operations with Lengths

Notes and Guidance

Children draw on their skills of the four operations and apply their understanding to length.

They solve one-step and two-step problems relating to length and use concrete and pictorial representations to calculate efficiently.

Mathematical Talk

Can you draw a bar model to help to decide which operations to use?

What are the key words in the question?
Can you ask and answer any different questions using the objects and information given?

Varied Fluency

Eva, Jack and Rosie each have a piece of ribbon.

- How much longer is Jack's ribbon than Eva's?
- Jack and Rosie put their ribbons together. How long are they altogether?
- Eva cuts three more ribbons of the same length as hers. What is the total length of all four ribbons?
- Eva cuts her ribbon in half. What is the length of each piece?

Teddy has a toy train and a toy plane.
The train is 28 cm long. The plane is 16 cm longer.
How long is the plane?
The toy train is double the length of a toy car.

Draw bar models to help you.

Four Operations with Lengths

Reasoning and Problem Solving

Here is a strip of orange paper.	The orange strip is 10 cm long and a blue strip is 40 cm long.
A blue strip is four times longer than a orange strip.	
The strips are joined end to end.	
How long is the orange strip?	
How long is the blue strip?	

White

Here is a strip of orange paper.

A blue strip is four times longer than a orange strip.

The strips are joined end to end.

How long is the orange strip?
How long is the blue strip?

There are 3 teddies in a box.
The brown teddy is 15 cm taller than the yellow teddy.

The yellow teddy is 3 cm shorter than the pink teddy.

The pink teddy is 42 cm tall.
How tall are the brown and yellow teddies?

How much taller is the brown teddy than the pink teddy?

The yellow teddy is 39 cm tall.

The brown teddy is 54 cm tall.

The brown teddy is
12 cm taller.

